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On the Maximum Achievable Sum-Rate With
Successive Decoding in Interference Channels
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Abstract—In this paper, we investigate the maximum achievable
sum-rate of the two-user Gaussian interference channel with
Gaussian superposition coding and successive decoding. We first
examine an approximate deterministic formulation of the problem,
and introduce the complementarity conditions that capture the use
of Gaussian coding and successive decoding. In the deterministic
channel problem, we find the constrained sum-capacity and its
achievable schemes with the minimum number of messages, first
in symmetric channels, and then in general asymmetric channels.
We show that the constrained sum-capacity oscillates as a function
of the cross link gain parameters between the information theo-
retic sum-capacity and the sum-capacity with interference treated
as noise. Furthermore, we show that if the number of messages
of either of the two users is fewer than the minimum number
required to achieve the constrained sum-capacity, the maximum
achievable sum-rate drops to that with interference treated as
noise. We provide two algorithms to translate the optimal schemes
in the deterministic channel model to the Gaussian channel model.
We also derive two upper bounds on the maximum achievable
sum-rate of the Gaussian Han-Kobayashi schemes, which auto-
matically upper bound the maximum achievable sum-rate using
successive decoding of Gaussian codewords. Numerical evalua-
tions show that, similar to the deterministic channel results, the
maximum achievable sum-rate with successive decoding in the
Gaussian channels oscillates between that with Han-Kobayashi
schemes and that with single message schemes.

Index Terms—Deterministic channel model, Gaussian interfer-
ence channel, successive decoding, sum-rate maximization.
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Fig. 1. Two-user Gaussian interference channel.

I. INTRODUCTION

W E consider the sum-rate maximization problem in two-
user Gaussian interference channels (cf. Fig. 1) under

the constraints of successive decoding. While the information
theoretic capacity region of the Gaussian interference channel is
still not known, it has been shown that a Han-Kobayashi scheme
with random Gaussian codewords can achieve within 1 bit/s/Hz
of the capacity region [2], and hence within 2 bits/s/Hz of the
sum-capacity. In this Gaussian Han-Kobayashi scheme, each
user first decodes both users’ common messages jointly, and
then decodes its own private message. In comparison, the sim-
plest commonly studied decoding constraint is that each user
treats the interference from the other users as noise, i.e., without
any decoding attempt. Using Gaussian codewords, the corre-
sponding constrained sum-rate maximization problem can be
formulated as a nonconvex optimization of power allocation,
which has an analytical solution in the two-user case [3]. It
has also been shown that within a certain range of channel pa-
rameters for weak interference channels, treating interference as
noise achieves the information theoretic sum-capacity [4]–[6].
For general interference channels with more than two users,
there is so far neither a near optimal solution information theo-
retically, nor a polynomial time algorithm that finds a near op-
timal solution with interference treated as noise [7], [8].

In this paper, we consider a decoding constraint—successive
decoding of Gaussian superposition codewords—that bridges
the complexity between joint decoding (e.g., in Han-Kobayashi
schemes) and treating interference as noise. We investigate
the maximum achievable sum-rate and its achievable schemes.
Compared to treating interference as noise, allowing successive
cancellation yields a much more complex problem structure.
To clarify and capture the key aspects of the problem, we resort
to the deterministic channel model [9]. In [10], the information
theoretic capacity region for the two-user deterministic interfer-
ence channel is derived as a special case of the El Gamal-Costa
deterministic model [11], and is shown to be achievable using
Han-Kobayashi schemes.
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We transmit messages using a superposition of Gaussian code-
books, and use successive decoding. To capture the use of succes-
sive decoding of Gaussian codewords, in the deterministic for-
mulation, we introduce the complementarity conditions on the
bit levels, which have also been characterized using a conflict
graph model in [12]. We develop transmission schemes on the
bit-levels, which in the Gaussian model corresponds to message
splitting and power allocation of the messages. We then derive
the constrained sum-capacity for the deterministic channel, and
show that it oscillates (as a function of the cross link gain pa-
rameters) between the information theoretic sum-capacity and
the sum-capacity with interference treated as noise. Furthermore,
the minimum number of messages needed to achieve the con-
strained sum-capacity is obtained. Interestingly, we show that
if the number of messages is limited to even one less than this
minimum capacity achieving number, the maximum achievable
sum-rate drops to that with interference treated as noise.

We then translate the optimal schemes in the determin-
istic channel to the Gaussian channel, using a rate constraint
equalization technique. To evaluate the optimality of the trans-
lated achievable schemes, we derive and compute two upper
bounds on the maximum achievable sum-rate of Gaussian
Han-Kobayashi schemes1. Since a scheme using superposition
coding with Gaussian codebooks and successive decoding is
a special case of Han-Kobayashi schemes, these bounds auto-
matically apply to the maximum achievable sum-rate with such
successive decoding schemes as well. We select two mutually
exclusive subsets of the inequality constraints that characterize
the Gaussian Han-Kobayashi capacity region. Maximizing the
sum-rate with each of the two subsets of inequalities leads to one
of the two upper bounds. The two bounds are shown to be tight
in different ranges of parameters. Numerical evaluations show
that the maximum achievable sum-rate with Gaussian superposi-
tion coding and successive decoding oscillates between that with
Han-Kobayashi schemes and that with single message schemes.

The remainder of the paper is organized as follows. Section II
formulates the problem of sum-rate maximization with suc-
cessive decoding of Gaussian superposition codewords in
Gaussian interference channels, and compares it with Gaussian
Han-Kobayashi schemes. Section III reformulates the problem
with the deterministic channel model, and then solves for the
constrained sum-capacity. Section IV translates the optimal
schemes in the deterministic channel back to the Gaussian
channel, and derives two upper bounds on the maximum
achievable sum-rate. Numerical evaluations of the achievability
against the upper bounds are provided. Section V concludes
the paper with a short discussion on generalizations of the
coding-decoding assumptions and their implications.

II. PROBLEM FORMULATION IN GAUSSIAN CHANNELS

We consider the two-user Gaussian interference channel
shown in Fig. 1. The received signals of the two users are

1Throughout this paper, when we refer to the Han-Kobayashi scheme, we
mean the Gaussian Han-Kobayashi scheme, unless stated otherwise.

where are constant complex channel gains,
is the transmitted signal of the encoded messages from the th
user, and . Define , .

There is an average power constraint equal to for the th
user . In the following, we first formulate the problem
of finding the sum-rate optimal Gaussian superposition coding
and successive decoding scheme, and then provide an illustra-
tive example to show that successive decoding schemes do not
necessarily achieve the same maximum achievable sum-rate as
Han-Kobayashi schemes.

A. Gaussian Superposition Coding and Successive Decoding:
A Power and Decoding Order Optimization

Suppose the th user uses a superposition of messages
. Denote by the information rate of mes-

sage . For the th user, the transmit signal is a super-
position of codewords , where each
has a block length , and is chosen from a codebook of size

that encodes message , generated using independent
and identically distributed (i.i.d.) random variables of .
With the power constraints , we have

(1)

where is the power allocated to message .
The th receiver attempts to decode all , ,

using successive decoding as follows. It chooses a decoding
order of all the messages from both users. It starts
decoding from the first message in this order (by treating all
other messages that are not yet decoded as noise,) then peeling
it off and moving to the next one, until it decodes all the mes-
sages intended for itself— , .

Denote the message that has order in by , i.e., it
is the th message of the th user. Then, for the successive
decoding procedure to have a vanishing error probability as the
block length , we have the following constraints on the
rates of the messages:

(2)

Now, we can formulate the sum-rate maximization problem as

(3)

Note that (3) involves both a combinatorial optimization of
the decoding orders and a nonconvex optimization of the
transmit power . As a result, it is a hard problem from an
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Fig. 2. Our approach to solving problem (3).

optimization point of view which has not been addressed in the
literature.

Interestingly, we show that an “indirect” approach can ef-
fectively and fruitfully provide approximately optimal solutions
to the above problem (3). Instead of directly working with the
Gaussian model, we approximate the problem using the recently
developed deterministic channel model [9]. The approximate
formulation successfully captures the key structure and intuition
of the original problem, for which we give a complete analyt-
ical solution that achieves the constrained sum-capacity in all
channel parameters. Next, we translate this optimal solution in
the deterministic formulation back to the Gaussian formulation,
and show that the resulting solution is indeed close to the op-
timum. This indirect approach of solving (3) is outlined in Fig. 2.

Next, we provide an illustration of the following point:
Although the constraints for the achievable rate region with
Han-Kobayashi schemes share some similarities with those
for the capacity region of multiple access channels, succes-
sive decoding in interference channels does not always have
the same achievability as Han-Kobayashi schemes, (whereas
time-sharing of successive decoding schemes does achieve the
capacity region of multiple access channels.)

B. Successive Decoding of Gaussian Codewords versus
Gaussian Han-Kobayashi Schemes With Joint Decoding

We first note that Gaussian superposition coding—succes-
sive decoding is a special case of the Han-Kobayashi scheme,
using the following observations. For the first user, if its message

is decoded at the second receiver according
to the decoding order , we categorize it into the common in-
formation of the first user. Otherwise, is treated as noise at
the second receiver, i.e., it appears after all the messages of the
second user in , and we categorize it into the private infor-
mation of the first user. The same categorization is performed
for the messages of the second user. Note that every mes-
sage of the two users is either categorized as private informa-
tion or common information. Thus, every successive decoding
scheme is a special case of the Han-Kobayashi scheme, and
hence the capacity region with successive decoding of Gaussian
codewords is included in that with Han-Kobayashi schemes.

However, the inclusion in the other direction is untrue,
since Han-Kobayashi schemes allow joint decoding. In
Sections III–V, we will give a characterization of the dif-

ference between the maximum achievable sum-rate using
Gaussian successive decoding schemes and that using Gaussian
Han-Kobayashi schemes. This difference appears despite
the fact that the sum-capacity of a Gaussian multiple access
channel is achievable using successive decoding of Gaussian
codewords. In the remainder of this section, we show an illus-
trative example that provides some intuition into this difference.

Suppose the th user uses two messages: a common
message and a private message . We consider a power
allocation to the encoded messages, and denote the power allo-
cated to and by and , Denote the achiev-
able rates of and by and . In a Han-Kobayashi
scheme, at each receiver, the common messages and the in-
tended private message are jointly decoded, treating the unin-
tended private message as noise. This gives rise to the achiev-
able rate region with any given power allocation as follows:

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)



ZHAO et al.: MAXIMUM ACHIEVABLE SUM-RATE 3801

(14)

In a successive decoding scheme, depending on the different
decoding orders applied, the achievable rate regions have dif-
ferent expressions. In the following, we provide and analyze the
achievable rate region with the decoding orders at receiver 1 and
2 being and , respec-
tively. The intuition obtained with these decoding orders holds
similarly for other decoding orders. With any given power allo-
cation, we have

(15)

(16)

(17)

It is immediate to check that (15)–(17) (4)–(14), but not vice
versa.

To observe the difference between the maximum achievable
sum-rate with (4)–(14) and that with(15)–(17), we examine the
following symmetric channel,

(18)

in which we apply symmetric power allocation schemes with
and , and a power constraint of

, , 2.

Remark 1: Note that ,
. As indicated in Fig. 19

of [10], under this parameter setting, simply using successive
decoding of Gaussian codewords can have an arbitrarily large
maximum achievable sum-rate loss compared to joint decoding
schemes, as .

We plot the sum-rates with the private message power
sweeping from nearly zero to the maximum (30
dB) as in Fig. 3. As observed, the difference between the two
schemes is evident when the private message power is
sufficiently smaller than the common message power (with

.) The intuition of why successive decoding of
Gaussian codewords is not equivalent to the Han-Kobayashi
schemes is best reflected in the case of . In the above
parameter setting, with , (4)–(14) translate to

whereas (15)–(17) translate to

As a result, the maximum achievable sum-rates with the
Han-Kobayashi scheme and that with the successive decoding
scheme are 10.19 and 5.56 bits, respectively. Here, the key
intuition is as follows: for a common message, its individual
rate constraints at the two receivers in a successive decoding
scheme (15) and (16) are tighter than those in a joint decoding
scheme (12) and (13). In Sections III–V, we will see that
(15) and (16) lead to a nonsmooth behavior of the maximum
achievable sum-rate using successive decoding of Gaussian
codewords. Finally, we connect the results shown in Fig. 3 to
the results shown later in Fig. 13 of Section IV-C:

Remark 2: In Fig. 3, the optimal symmetric power allocation
for a Han-Kobayashi scheme and that for a successive decoding
scheme are and 14.5 dB, respectively, leading to
sum-rates of 11.2 and 10.2 bits. This result corresponds to the
performance evaluation at in Fig. 13.

III. SUM-CAPACITY IN DETERMINISTIC INTERFERENCE

CHANNELS

A. Channel Model and Problem Formulation

In this section, we apply the deterministic channel model [9]
as an approximation of the Gaussian model on the two-user in-
terference channel. We define

(19)

(20)

(21)

(22)

where are the channel gains normalized by the
noise power. Without loss of generality (WLOG), we assume
that . We note that the logarithms used in this paper
are taken to base 2. Now, counts the bit levels of the signal
sent from the th transmitter that are above the noise level at the
th receiver. Further, we define

(23)

which represent the cross channel gains relative to the direct
channel gains, in terms of the number of bit-level shifts. To
formulate the optimization problem, we consider to be
real numbers. (As will be shown later in Remark 5, with integer
bit-level channel parameters, our derivations automatically give
integer bit-level optimal solutions.)
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Fig. 3. Illustrations of the difference between the achievable sum-rate with Han-Kobayashi schemes and that with successive decoding of Gaussian codewords.

Fig. 4. Two-user deterministic interference channel. Levels A and B interfere at the first receiver, and cannot be fully active simultaneously.

In Fig. 4, the desired signal and the interference signal at both
receivers are depicted. and are the sets of received infor-
mation levels at receiver 1 that are above the noise level, from
users 1 and 2, respectively. and are the sets of received
information levels at receiver 2. A more concise representation
is provided in Fig. 5.

• The sets of information levels of the desired signals at re-
ceivers 1 and 2 are represented by the continuous intervals

and on two parallel
lines, where the leftmost points correspond to the most sig-
nificant (i.e., highest) information levels, and the points at

correspond to the positions of the noise levels at both
receivers.

• The positions of the information levels of the interfering
signals are indicated by the dashed lines crossing between
the two parallel lines.

Fig. 5. Interval representation of the two-user deterministic interference
channel.

Note that an information level (or simply termed “level”) is
a real point on a line, and the measure of a set of levels (e.g.,
the length of an interval) equals the amount of information that
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this set can carry. The design variables are whether or not each
level of a user’s received desired signal carries information for
this user, characterized by the following definition.

Definition 1: is the indicator function on whether the
levels inside carry information for the th user.

if , and level carries
information for the th
otherwise.

(24)
As a result, the rates of the two users are

For an information level s.t. , we call it an active
level for the th user, and otherwise an inactive level.

The constraints from superposition of Gaussian codewords
with successive decoding (15)–(17) translate to the following
Complementarity Conditions in the deterministic formulation.

(25)

(26)

where and are defined in (23). The interpretation of (25)
and (26) are as follows: for any two levels each from one of
the two users, if they interfere with each other at any of the two
receivers, they cannot be simultaneously active. For example, in
Fig. 4, information levels from the first user and from the
second user interfere at the first receiver, and hence cannot be
fully active simultaneously. These complementarity conditions
have also been characterized using a conflict graph model in
[12].

Remark 3: For any given function , , every dis-
joint segment within with on it corresponds to a
distinct message. Adjacent segments that can be so combined
as a super-segment having on it, are viewed as one
segment, i.e., the combined super-segment. Thus, for two seg-
ments and , satisfying

, , if , , then ,
separated by the point have to correspond to two distinct

messages.
Finally, we note that

and

Thus, we have the following result:

Lemma 1: The parameter settings and

correspond to the same set of complementarity conditions.
We consider the problem of maximizing the sum-rate

of the two users employing successive
decoding, formulated as the following continuous support
(infinite dimensional) optimization problem:

(27)

Problem (27) does not include upper bounds on the number of
messages , . Such upper bounds can be added based on
Remark 3. We will analyze the cases without and with upper
bounds on the number of messages. We first derive the con-
strained sum-capacity in symmetric interference channels in the
remainder of this section. Results are then generalized using
similar approaches to general (asymmetric) interference chan-
nels in Appendix B.

B. Symmetric Interference Channels

In this section, we consider the case where ,
. Define , . WLOG, we normalize the

amount of information levels by , and consider
, and . Note that in symmetric channels,

.
Now, (25) and (26) becomes

(28)

(29)

Problem (27) becomes

(30)

From Lemma 1, it is sufficient to only consider the case with
, i.e., , and the case with can be obtained

by symmetry as in Corollary 3 later.
We next derive the constrained sum-capacity using succes-

sive decoding for , first without upper bounds on the
number of messages, then with upper bounds. We will see that
in symmetric channels, the constrained sum-capacity is
achievable with . Thus, we also use the maximum
achievable symmetric rate, denoted by as a function of ,
as an equivalent performance measure. is thus one half of
the optimal value of (30).

1) Symmetric Capacity Without Constraint on the Number
of Messages:

Theorem 1: In symmetric weak interference channels
, the constrained symmetric capacity, i.e., the maximum

achievable symmetric rate using successive decoding [with (28)
and (29)], , is characterized by

• , when .
• , when .
• In every interval is a

decreasing linear function.
• In every interval , is an

increasing linear function.
• .

Remark 4: We plot in Fig. 6, compared with the infor-
mation theoretic capacity [10].

The key idea in deriving the constrained sum-capacity is to
decouple the effects of the complementarity conditions. Before
we present the complete proof of Theorem 1, we first analyze
the following two examples that illustrate this decoupling idea.
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Fig. 6. The symmetric capacity with successive decoding in symmetric deterministic weak interference channels.

Example 1, , : As in Fig. 7(a), we divide the
interval into 4 segments , , , with equal lengths.
From the complementarity conditions (28) and (29),

(31)

As a result,

Similarly, , and we have

(32)

Clearly, can be achieved by letting

and

Example 2, , : As in Fig. 7(b), we divide
the interval into 5 segments , , , , with equal

lengths. For the same reasons as in the last example,
. Therefore

(33)

Clearly, can be achieved by letting

and

Fig. 7. Two examples that illustrate the proof ideas of Theorem 1. (a) The ex-
ample of � � . (b) The example of � � .

Proof of Theorem 1:
i) When ,

. We divide the interval into segments
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Fig. 8. Segmentation of the information levels, � � � .

, where the first segments have length
, and the last segment has length

(cf. Fig. 8.) With these, the complementarity conditions
(28) and (29) are equivalent to the following:

(34)

and (35)

[Equations (34) and (35) correspond to the shaded strips
in Fig. 8.]
Similarly

(36)

and (37)

We partition the set of all segments into two groups:
and . Note

that
• Equation (34) and (35) are constraints on with

support in , and on with support in .
• Equation (36) and (37) are constraints on with

support in , and on with support in .
Consequently, instead of viewing the (infinite number of)
optimization variables as and , it is
more convenient to view them as

(38)

because there is no constraint between and from
the complementarity conditions. In other words,

and can be optimized independently of each other.
Define

Clearly, . Hence (30) can be solved
by separately solving the following two subproblems:

(39)

and

(40)

We now prove that the optimal value of (39) is
:

• (Achievability:) is achievable with ,
, and , .

• (Converse:) ,
,

(41)

By symmetry, the solution of (40) can be obtained sim-
ilarly, and the optimal value is as
well. Therefore, the optimal value of (30) is

.
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Fig. 9. Segmentation of the information levels, � � � .

As the above maximum achievable scheme is symmetric,
i.e.

(42)

the symmetric capacity is

(43)

Clearly, is an increasing linear function of in
every interval , . It can be
verified that , and .

ii) When ,
. Similarly to i), we divide the interval

into segments , where the first
segments have length , and the last segment has

length (cf. Fig. 9). Then, the
complementarity conditions (28) and (29) are equivalent
to the following:

and

(44)

and and

(45)

Similarly to i), with and
, (30) can be solved by separately

solving the following two subproblems:

(46)

and

(47)

We now prove that the optimal value of (46) is :

• (Achievability:) is achievable with ,
, and , .

• (Converse:) ,
,

(48)

By symmetry, the solution of (47) can be obtained simi-
larly. Thus, the optimal value of (30) is . The
maximum achievable scheme is also characterized by
(42), and the symmetric rate is

(49)

Clearly, is a decreasing linear function of in every
interval , . It can be verified
that , and .

iii) It is clear that , which is achievable with
, , and ,

which is achievable by and

.

We summarize the optimal scheme that achieves the con-
strained symmetric capacity as follows:

Corollary 1: When , the constrained symmetric
capacity is achievable with

(50)

where and .
In the special cases when , and

, the constrained symmetric capacity drops to which is
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Fig. 10. The symmetric capacity with successive decoding in symmetric deterministic strong interference channels.

also achievable by time sharing and

.

We observe that the numbers of messages used by the two
users— , —in the above optimal schemes are as follows.

Corollary 2:
• when , , ,

;
• when , , , or ,

.

Remark 5: In the original formulation of the deterministic
channel model [9], are considered to be integers, and the
achievable scheme must also have integer bit-levels. In this case,

is a rational number. As a result, the optimal scheme
(50) will consist of active segments that have rational bound-
aries with the same denominator . This indeed corresponds
to an integer bit-level solution.

From Theorem 1 (cf. Fig. 6), it is interesting to see that the
constrained symmetric capacity oscillates as a function of be-
tween the information theoretic capacity and the baseline of .
This phenomenon is a consequence of the complementarity con-
ditions. In Section V, we further discuss the connections of this
result to other coding-decoding constraints.

Finally, from Lemma 1, we have the following corollary on
the maximum achievable symmetric rate with successive de-
coding in strong interference channels.

Corollary 3: In symmetric strong interference channels

, .

We plot , in Fig. 10, compared with the
information theoretic capacity [10].

2) The Case With a Limited Number of Messages: In this
subsection, we find the maximum achievable sum/symmetric
rate using successive decoding when there are constraints on the
maximum number of messages for the two users, respectively.

Clearly, the maximum achievable symmetric rate achieved will
be lower than . We start with the following two lemmas,
whose proofs are relegated to Appendix A.

Lemma 2: If there exists a segment with an even index
and does not end at 1, such that

[with defined as in (24)] then .

Lemma 3: If there exists a segment with an odd index
, such that

then .
Recall that the optimal scheme (50) requires that, for both

users, all segments in are fully inactive, and all segments
in are fully active. The above two lemmas show the cost
of violating (50): if one of the segments in becomes fully
active for either user (cf. Lemma 2), or one of the segments in

becomes fully inactive for either user (cf. Lemma 3), the
resulting sum-rate cannot be greater than 1. We now establish
the following theorem.

Theorem 2: Denote by the number of messages
used by the th user. When ,
if or , the maximum achievable sum-rate is 1.

Proof: WLOG, assume that there is a constraint of .
i) First, the sum-rate of 1 is always achievable with

ii) If there exists , , such that either ,
, or , , then from Lemma 2,

the achieved sum-rate is no greater than 1.
iii) If for all , , there exists in the interior of

such that .
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Fig. 11. The maximum achievable symmetric rate with a limited number of messages. (a) Maximum achievable symmetric rate with � � �. (b) Maximum
achievable symmetric rate with � � �.

Note that separates the two segments , for the
first user. From Remark 3, and have to be two dis-
tinct messages provided that both of them are (at least partly)
active for the first user. On the other hand, there are such
segments (cf. Figs. 8 and 9), whereas
the number of messages of the first user is upper bounded by

. Consequently, , such that ,
. In other words, there must be a segment in that

is fully inactive for the first user. By Lemma 3, in this case, the
achieved sum-rate is no greater than 1.

Comparing Theorem 2 to Corollary 2, we conclude that if the
number of messages used for either of the two users is fewer
than the number used in the optimal scheme (50) (as in Corollary
2), the maximum achievable symmetric rate drops to . This
is illustrated in Fig. 11(a) with (or ), and in
Fig. 11(b) with (or ).

Complete solutions (without and with constraints on the
number of messages) in asymmetric channels follow similar
ideas, albeit more tediously. Detailed discussions are relegated
to Appendix B.
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IV. APPROXIMATE MAXIMUM ACHIEVABLE SUM-RATE

WITH SUCCESSIVE DECODING IN GAUSSIAN

INTERFERENCE CHANNELS

In this section, we turn our focus back to the two-user
Gaussian interference channel, and consider the sum-rate
maximization problem (3). Based on the relation between the
deterministic channel model and the Gaussian channel model,
we translate the optimal solution of the deterministic channel
into the Gaussian channel. We then derive upper bounds on
the optimal value of (3), and evaluate the achievability of our
translation against these upper bounds.

A. Achievable Sum-Rate Motivated by the Optimal Scheme
in the Deterministic Channel

As the deterministic channel model can be viewed as an ap-
proximation to the Gaussian channel model, optimal schemes
of the former suggest approximately optimal schemes of the
latter. In this subsection, we show the translation of the op-
timal scheme of the deterministic channel to that of the Gaussian
channel. We show in detail two forms (simple and fine) of the
translation for symmetric interference channels

The translation for asymmetric channels can be derived simi-
larly, albeit more tediously.

1) A Simple Translation of Power Allocation for the Mes-
sages: Recall the optimal scheme for symmetric deterministic
interference channels (Corollary 1,) as plotted in Fig. 12. ,

represent the segments (or messages as translated
to the Gaussian channel) that are active for the th user. Recall
that

(51)

Thus, a shift of to the right (i.e., lower information levels)
in the deterministic channel approximately corresponds to a
power scaling factor of in the Gaussian channel. Accord-
ingly, a simple translation of the symmetric optimal schemes
(cf. Fig. 12) into the Gaussian channel is given as follows.

Algorithm 1: A simple translation by direct power scaling

Step 1: Determine the number of messages for
each user as the same number used in the optimal deterministic
channel scheme.

Step 2: If ,

let , and normalize the

power by .

If ,

let , and normalize the

power by .

2) A Finer Translation of Power Allocation for the Messages:
In this part, for notational simplicity, we assume WLOG that

Fig. 12. The optimal schemes in the symmetric deterministic interference
channel. (a) Weak interference channel. (b) Strong interference channel.

the noise power and . In the optimal
deterministic scheme, the key property that ensures optimality
is the following:

Corollary 4: A message that is decoded at both re-
ceivers is subject to the same achievable rate constraint at both
receivers.

For example, in the optimal deterministic schemes (cf.
Fig. 12), message is subject to an achievable rate con-
straint of at the first receiver, and that of at the
second receiver, with . In weak interference
channels, and are the
messages that are decoded at both receivers, whereas ,

are decoded only at their intended receiver (and treated
as noise at the other receiver.) In strong interference channels,
all messages are decoded at both receivers.

According to Corollary 4, we show that a finer translation
of the power allocation for the messages is achieved by equal-
izing the two rate constraints for every common message. (How-
ever, rates of different common messages are not necessarily the
same.) In what follows, we present this translation for weak in-
terference channel and strong interference channel, respectively.

Weak Interference Channel, : As the first
step of determining the power allocations, we give the following
lemma on the power allocation of message (with the proof
found in Appendix C).

Lemma 4:
1) If , then , and is treated as

noise at the second (first) receiver, with . In this
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case, there is only one message for each user (as its private
message.) Rate constraint equalization is not needed.

2) If , then , and are decoded
at both receivers. To equalize their rate constraints at both
receivers, we must have the power allocation as follows:

(52)

Next, we observe that after decoding , at both re-
ceivers, determining for , can be transformed to
an equivalent first step problem with : solving the
new of the transformed problem gives the correct equal-
izing solution for of the original problem. In general, we
have the following recursive algorithm in determining and

.

Algorithm 2.1, A finer translation by adapting and the powers
using rate constraint equalization; weak interference channel

Initialize .

Step 1: If , then and terminate.

Step 2: .

. Go to Step 1.

Strong Interference Channel, : As the first
step of determining the power allocations, we give the following
lemma on the power allocation of (with the proof found
in Appendix C).

Lemma 5: and are always decoded at both re-
ceivers. Moreover,

1) If , then , and the power allocation of
and is . In this case, there is only one

message for each user. Rate constraint equalization is not
needed.

2) If , then . To equalize the rate constraints
of (and ) at both receivers, we must have the
power allocation as follows:

(53)

Next, we observe that after decoding , at both re-
ceivers, determining for , can be transformed to
an equivalent first step problem with : solving the
new of the transformed problem gives the correct equal-
izing solution for of the original problem. In general, we
have the following recursive algorithm in determining and

.

Algorithm 2.2, A finer translation by adapting and the powers
using rate constraint equalization; strong interference channel

Initialize .

Step 1: If , then and terminate.

Step 2: .

. Go to Step 1.

Numerical evaluations of the above simple and finer trans-
lations of the optimal schemes for the deterministic channel
into that for the Gaussian channel are provided later in Figs. 13
and 15.

B. Upper Bounds on the Maximum Achievable Sum-Rate With
Successive Decoding of Gaussian Codewords

In this subsection, we provide two upper bounds on the
optimal solution of (3) for general (asymmetric) weak inter-
ference channels. More specifically, the bounds are derived
for the maximum achievable sum-rate with Han-Kobayashi
schemes, which automatically upper bound that with successive
decoding of Gaussian codewords (as shown in Section II-B.)
We will observe that, for weak interference channels, the two
bounds have complementary efficiencies, i.e., each being tight
in a different regime of parameters. For strong interference
channels, the information theoretic capacity is known [13],
which is achievable by jointly decoding of all the messages
from both users.

Similarly to Section II-B, we denote by the private mes-
sage of the th user, and the common message
We denote to be the power allocated to each private mes-
sage , , 2. Then, the power of the common message

equals . WLOG, we normalize the channel parame-
ters such that . Denote the rates of and
by and . The maximum achievable sum-rate of Gaussian
Han-Kobayashi schemes is thus the following:

(54)

To bound (54), we select two mutually exclusive subsets of
and . Then, with each subset of the

constraints, a relaxed sum-rate maximization problem can be
solved, leading to an upper bound on the original maximum
achievable sum-rate (54).

The first upper bound on the maximum achievable sum-rate
is as follows [whose proof is immediate from (4), (5) and (14)].

Lemma 6: The maximum achievable sum-rate using Han-
Kobayashi schemes is upper bounded by

(55)

Computation of the Upper Bound (55): Note that

(56)
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(57)

where , . Clearly,
the minimum of (56) and (57)) is

(58)

Now, consider the halfspace defined by the
linear constraint

(59)

In ,

(60)

Note that , . Thus, depending on the sign
of , we have the following two cases.

Case 1: . Then, (59) gives an upper bound
on . Consequently, to maximize (60), the optimal solution is
achieved with . Thus, maximizing (60) is equivalent to

(61)

(62)

in which the objective (61) is monotonic, and the solution is
either or .

Case 2: . Then, (59) gives a lower bound on

(63)

Consequently, to maximize (60), the optimal solution is
achieved with , which is a linear
function of . Substituting this into (60), we need to solve the
following problem:

(64)

where , , are constants determined by , ,
, , , . Now, (64) can be solved by taking the first

derivative w.r.t. , and checking the two stationary points and
the two boundary points.

In the other halfspace , the same procedure as above can
be applied, and the maximizer of (58) within can be found.
Comparing the two maximizers within and , respectively,
we get the global maximizer of (55).

The second upper bound on the maximum achievable sum-
rate is as follows [whose proof is immediate from (10) and (11)].

Lemma 7: The maximum achievable sum-rate using Han-
Kobayashi schemes is upper bounded by

(65)

Computation of the Upper Bound (65): Note that

(66)

(67)

where (66) is a function only of , and (67) is a function only of
. Clearly, max (66), and max (67),

can each be solved by taking the first order derivatives,
and checking the stationary points and the boundary points.

We combine the two upper bounds (55) and (65) as the fol-
lowing theorem.

Theorem 3: The maximum achievable sum-rate using
Gaussian superposition coding-successive decoding is upper
bounded by .

C. Performance Evaluation

We numerically evaluate our results in symmetric Gaussian
interference channels. The is set to be 30 dB. We first eval-
uate the performance of successive decoding in weak interfer-
ence channels and then in strong interference channels.

1) Weak Interference Channel: We sweep the parameter
range of , as when , the
approximate optimal transmission scheme is simply treating
interference as noise without successive decoding.

In Fig. 13, the simple translation by Algorithm 1 and the finer
translation by Algorithm 2.1 are evaluated, and the two upper
bounds derived above (55), (65) are computed. The maximum
achievable sum-rate with a single message for each user

is also computed, and is used as a baseline scheme for
comparison.

We make the following observations:
• The finer translation of the optimal deterministic scheme

by Algorithm 2.1 is strictly better than the simple trans-
lation by Algorithm 1, and is also strictly better than the
optimal single message scheme.

• The first upper bound (55) is tighter for higher (
in this example), while the second upper bound (65)

is tighter for lower ( in this example).
• A phenomenon similar to that in the deterministic chan-

nels appears: the maximum achievable sum-rate with
successive decoding of Gaussian codewords oscillates
between that with Han-Kobayashi schemes and that with
single message schemes.

• The largest difference between the maximum achievable
sum-rate of successive decoding and that of single mes-
sage schemes appears at around , which is
about 1.8 bits.
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Fig. 13. Performance evaluation in symmetric weak interference channel: achievability versus upper bounds.

Fig. 14. Maximum achievable sum-rate differences: Han-Kobayashi versus successive decoding at � � ����, and successive decoding versus the optimal single
message scheme at � � ����.

• The largest difference between the maximum achievable
sum-rate of successive decoding and that of joint decoding
(Han-Kobayashi schemes) appears at around

. This corresponds to the same parameter setting as
discussed in Section II-B (cf. Fig. 3). We see that with
30 dB , this largest maximum achievable sum-rate dif-
ference is about 1.0 bits.

For this particular case with , the observed
maximum achievable sum-rate differences (1.8 bits and 1.0
bits) may not seem very large. However, the capacity curves

shown with the deterministic channel model (cf. Fig. 6) indicate
that these differences can go to infinity as . This is
because a rate point on the symmetric capacity curve
in the deterministic channel has the following interpretation
of generalized degrees of freedom in the Gaussian channel
[2], [10]:

(68)
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Fig. 15. Performance evaluation in symmetric strong interference channel: successive decoding versus information theoretic capacity.

where , and
is the symmetric capacity in the two-user symmetric Gaussian
channel as a function of and .

Since as , for a fixed , any
finite gap of the achievable rates in the deterministic channel
indicates a rate gap that goes to infinity as in the
Gaussian channel. To illustrate this, we plot the following max-
imum achievable sum-rate differences in the Gaussian channel,
with growing from 10 to 90 dB:

• The maximum achievable sum-rate gap between Gaussian
superposition coding-successive decoding schemes and
single message schemes, with .

• The maximum achievable sum-rate gap between
Han-Kobayashi schemes and Gaussian superposi-
tion coding—successive decoding schemes, with

.
As observed, the maximum achievable sum-rate gaps in-

crease asymptotically linearly with , and will go to
infinity as .

2) Strong Interference Channel: We sweep the parameter
range of . As the information theoretic
sum-capacity in strong interference channel can be achieved by
having each receiver jointly decode all the messages from both
users [13], we directly compare the achievable sum-rate using
successive decoding with this joint decoding sum-capacity (in-
stead of upper bounds on it). This joint decoding sum-capacity
can be computed as follows:

(69)

In Fig. 15, the finer translation by Algorithm 2.2 is evaluated
and compared with the information theoretic sum-capacity (69).
Interestingly, an oscillation phenomenon similar to that in the
deterministic channel case (cf. Fig. 10) is observed.

V. CONCLUDING REMARKS AND DISCUSSION

In this paper, we studied the problem of sum-rate maxi-
mization with Gaussian superposition coding and successive
decoding in two-user interference channels. This is a hard
problem that involves both a combinatorial optimization of
decoding orders and a nonconvex optimization of power allo-
cation. To approach this problem, we used the deterministic
channel model as an educated approximation of the Gaussian
channel model, and introduced the complementarity condi-
tions that capture the use of successive decoding of Gaussian
codewords. We solved the constrained sum-capacity of the
deterministic interference channel under the complementarity
conditions, and obtained the constrained capacity achieving
schemes with the minimum number of messages. We showed
that the constrained sum-capacity oscillates as a function of
the cross link gain parameters between the information the-
oretic sum-capacity and the sum-capacity with interference
treated as noise. Furthermore, we showed that if the number
of messages used by either of the two users is fewer than its
minimum capacity achieving number, the maximum achievable
sum-rate drops to that with interference treated as noise. Next,
we translated the optimal schemes in the deterministic channel
to the Gaussian channel using a rate constraint equalization
technique, and provided two upper bounds on the maximum
achievable sum-rate with Gaussian superposition coding and
successive decoding. Numerical evaluations of the translation
and the upper bounds showed that the maximum achievable
sum-rate with successive decoding of Gaussian codewords
oscillates between that with Han-Kobayashi schemes and that
with single message schemes.



3814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 6, JUNE 2012

Next, we discuss some intuitions and generalizations of the
coding-decoding assumptions.

A. Complementarity Conditions and Gaussian Codewords

The complementarity conditions (25) and (26) in the deter-
ministic channel model has played a central role that leads to the
discovered oscillating constrained sum-capacity (cf. Theorem
1). The intuition behind the complementarity conditions is as
follows: At any receiver, if two active levels from different users
interfere with each other, then no information can be recovered
at this level. In other words, the sum of interfering codewords
provides nothing helpful.

This is exactly the case when random Gaussian codewords
are used in Gaussian channels with successive decoding,
because the sum of two codewords from random Gaussian
codebooks cannot be decoded as a valid codeword. This is the
reason why the usage of Gaussian codewords with successive
decoding is translated to complementarity conditions in the
deterministic channels. (Note that the preceding discussions
do not apply to joint decoding of Gaussian codewords as in
Han-Kobayashi schemes.)

B. Modulo-2 Additions, Lattice Codes and Feedback

In the deterministic channel, a relaxation on the comple-
mentarity conditions is that the sum of two interfering active
levels can be decoded as their modulo-2 sum. As a result, the
aggregate of two interfering codewords still provides something
valuable that can be exploited to achieve higher capacity. This
assumption is part of the original formulation of the determin-
istic channel model [9], with which the information theoretic
capacity of the two-user interference channel (cf. Fig. 6 for
the symmetric case) can be achieved with Han-Kobayashi
schemes [10].

In Gaussian channels, to achieve an effect similar to de-
coding the modulo-2 sum with successive decoding, Lattice
codes are natural candidates of the coding schemes. This is
because Lattice codebooks have the group property such that
the sum of two lattice codewords can still be decoded as a valid
codeword. Such intermediate information can be decoded first
and exploited later during a successive decoding procedure,
in order to increase the achievable rate. For this to succeed in
interference channels, alignment of the signal scales becomes
essential [14]. However, our preliminary results have shown
that the ability to decode the sum of the Lattice codewords does
not increase the maximum achievable sum-rate for low and
medium s. In the above setting of (which
is typically considered as a high in practice) numerical
computations show that the maximum achievable sum-rate
using successive decoding of lattice codewords with alignment
of signal scales is lower than the previously shown achievable
sum-rate using successive decoding of Gaussian codewords (cf.
Fig. 13), for the entire range of . The
reason is that the cost of alignment of the signal scales turns out
to be higher than the benefit from it, if is not sufficiently
high. In summary, no matter using Gaussian codewords or
Lattice codewords, the gap between the achievable rate using

successive decoding and that using joint decoding can be
significant for typical s in practice.

Recently, the role of feedback in further increasing the in-
formation theoretic capacity region has been studied [15], [16].
In these work, the deterministic channel model was also em-
ployed as an approximation of the Gaussian channel model,
leading to useful insights in the design of near-optimal trans-
mission schemes with feedback. We note that, in deterministic
channels, allowing feedback implicitly assumes that modulo-2
sums can be decoded. In Gaussian channels, it remains an inter-
esting open question to find the maximum achievable sum-rate
using successive decoding of Lattice codewords with feedback.

C. Symbol Extensions and Asymmetric Complex Signaling

We have focused on two-user complex Gaussian interference
channels with constant channel coefficients, and have assumed
that symbol extensions are not used, and circularly symmetric
complex Gaussian distribution is employed in codebook gen-
eration. With symbol extensions and asymmetric complex sig-
naling [17], the maximum achievable sum-rate using successive
decoding can be potentially higher. It has been shown that, in
three or more user interference channels, higher sum-degrees of
freedom can be achieved by interference alignment if symbol
extensions and asymmetric complex signaling are used [17].
In two-user interference channels, however, interference align-
ment is not applicable, and it remains an interesting open ques-
tion to find the maximum achievable sum-rate with successive
decoding considering symbol extensions and asymmetric com-
plex signaling.

APPENDIX A
PROOFS OF LEMMA 2 AND 3

Proof of Lemma 2: By symmetry, it is sufficient to prove
for the case , , for some that does not end
at 1.

Now, consider the sum-rate achieved within (38).
As shown in Fig. 16, can be partitioned into three
parts: ,

, and
, ( , , can be

degenerate.) Note that
• From the achievable schemes in the proof of Theorem 1,

the maximum achievable sum-rate within can
be achieved with ,

and ,
.

• By the assumed condition, ,
, .

Therefore, under the assumed condition, the maximum achiev-
able sum-rate within is achievable with

and .
Furthermore, from the proof of Theorem 1, we know that

the maximum achievable sum-rate within is achievable with
and . Combining

the maximum achievable schemes within and , by let-
ting and ,
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Fig. 16. � partitioned into three parts for Lemma 2.

Fig. 17. � partitioned into three parts for Lemma 3.

a sum-rate of 1 is achieved, and this is the maximum achievable
sum-rate given the assumed condition.

Proof of Lemma 3: By symmetry, it is sufficient to prove
for the case , , for some .

Now, consider the sum-rate achieved within . As shown
in Fig. 17, can be partitioned into three parts:

, ,
and , ( , ,

can be degenerate.) Note that:
• From the achievable schemes in the proof of Theorem 1,

the maximum achievable sum-rate within can be
achieved with ,

and , .
• By the assumed condition, , .

Therefore, under the assumed condition, the maximum achiev-
able sum-rate within is achievable with

and .

Furthermore, from the proof of Theorem 1, we know that
the maximum achievable sum-rate within is achievable with

and . Combining
the maximum achievable schemes within and , by let-
ting and ,
a sum-rate 1 is achieved, and this is the maximum achievable
sum-rate given the assumed condition.

APPENDIX B
SUM-CAPACITY OF DETERMINISTIC ASYMMETRIC

INTERFERENCE CHANNELS

In this section, we consider the general two-user interference
channel where the parameters , , , can be arbi-
trary. Still, WLOG, we make the assumptions that
and . We will see that our approaches in the symmetric
channel can be similarly extended to solving the constrained
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Fig. 18. � � � , � � � , and � � � .

sum-capacity in asymmetric channels, without and with con-
straints on the number of messages.

From Lemma 1, it is sufficient to consider the following three
cases:

and

and

and (70)

A. Sum-Capacity Without Constraint on the Number of
Messages

We provide the optimal scheme that achieves the constrained
sum-capacity in each of the three cases in (70), respectively.

and : This is by definition (23) equivalent
to and .

Case 1, : Define , .
As depicted in Fig. 18, interval is partitioned into
segments , with and

; the last segment ending at 1 has
the length of the proper residual. Interval
is partitioned into segments , with

and ; the last segment ending
at 1 has the length of the proper residual.

Similarly to (38) as in the previous analysis for the symmetric
channels, we partition the optimization variables and

into

(71)

As there is no constraint between and from the com-
plementarity conditions (25) and (26), similarly to (39) and (40),
the sum-rate maximization (27) is decoupled into two separate
problems

(72)

and

(73)

By the same argument as in the proof of Theorem 1, the op-
timal solution of (72) is given by

and
(74)

Also, the optimal solution of (73) is given by

and (75)

Consequently, we have the following theorem.

Theorem 4: A constrained sum-capacity achieving scheme
is given by

and (76)

and the maximum achievable sum-rate is readily computable
based on (76).

Case 2, : Define .
As depicted in Fig. 19, interval is partitioned into
segments , with , and

; the last segment ending at 1 has the length of
the proper residual. Interval is partitioned into
segments , with ; the last seg-
ment ending at 1 has the length of the proper residual. (The in-
dexing is not consecutive as we consider and

as degenerating to empty sets.)
Clearly, of does not conflict with any levels of , and

thus we let , . On all the other segments, the
sum-rate maximization problem is

(77)

subject to
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Fig. 19. � � � , � � � , and � � � .

Fig. 20. � � � , � � � , � � � , and � � � .

Fig. 21. � � � , � � � , � � � , and � � � , scheme I (nonoptimal).

By the same argument as in the proof of Theorem 1, the optimal
solution of (77) is given by

and

Thus, a sum-capacity achieving scheme is simply ,
, and , .

and :
This is by definition (23) equivalent to and
. Note that by Lemma 1, it is sufficient to only consider the

case where , (because in case , we have
.)

Case 1, , and : Define
. As depicted in Fig. 20, interval is

partitioned into segments , with
; the last segment ending at 1 has the length of the proper

residual. Interval is partitioned into segments
, with and ;

the last segment ending at 1 has the length of the proper residual.

Clearly, of does not conflict with any levels of , and
thus we let , . On all the other segments, the
sum-rate maximization problem is again (77), and the optimal
solution is given by

and

Thus, a sum-capacity achieving scheme is , ,

and .

Case 2, , and :
Define . As depicted in

Fig. 21, interval is partitioned into segments
, with and

; the last segment ending at 1 has the length of the
proper residual. Interval is partitioned into
segments , with and

; the last segment ending at 1 has the
length of the proper residual.
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Fig. 22. � � � , � � � , � � � , and � � � , scheme II (optimal).

Fig. 23. � � � , � � � , and � � � .

Fig. 24. � � � and � � � .

Compare with Case 1 of Appendix B-A0a and note the simi-
larities between Figs. 21 and 18: we apply the same partition of
the optimization variables (71), and the sum-rate maximization
(27) is decoupled in the same way into two separate problems
(72) and (73). However, while the optimal solution of (72) is still
given by (74), the optimal solution of (73) is no longer given by
(75). Instead, as , the optimal solution of (73) is given by

and

Thus, a sum-capacity achieving scheme is given by ,
, and , , depicted as in Fig. 22.

Case 3, : Comparing with Case 2 of
Appendix B-A0a (cf. Fig. 19), with the same definition of

and the same partition of and , the segmentation is
depicted in Fig. 23.

Noting the similarities between Figs. 19 and 23, we see that
the optimal solution of the two cases are the same: ,

, and , .

and : This is by (23) equivalent to
and . Note that by Lemma 1, it is sufficient to only
consider the case where , (because in case ,
we have .)

Define . As depicted
in Fig. 24, interval is partitioned into seg-
ments , with and

; the last segment ending at 1 has the
length of the proper residual. Interval is parti-
tioned into segments , with ;
the last segment ending at 1 has the length of the proper
residual.

Clearly, of does not conflict with any levels of , and
thus we let , . On all the other segments, the
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sum-rate maximization problem is again (77). As , the
optimal solution is given by

and

Thus, a sum-capacity achieving scheme is

and

Summarizing the discussions of the six parameter settings (cf.
Figs. 18–20 and 22–24) in this subsection, we observe:

Remark 6: Except for Case 1 of Appendix B-A0a, the op-
timal schemes for the other cases all have the property that only
one message is used for each user.

The Case With a Limited Number of Messages: In this sub-
section, we extend the sum-capacity results in Section III-B-II
to the asymmetric channels when there are upper bounds on
the number of messages , for the two users, respec-
tively. From Remark 6, we only need to discuss Case 1 of
Appendix B-A0a (cf. Fig. 18,) with its corresponding notations.

Similarly to the symmetric channels, we generalize Lemma 2
and 3 to the following two lemmas for the general (asymmetric)
channels, whose proofs are exact parallels to those of Lemma 2
and 3.

Lemma 8:
1. If does not end at 1, such that , ,

then .
2. If does not end at 1, such that , ,

then .

Lemma 9:
1. If , such that , , then

.
2. If , such that , , then

.
We then have the following generalization of Theorem 2 to
the general (asymmetric) channels.

Theorem 5: Denote by the number of messages used by
the th user in any scheme, and denote by the dictated number
of messages used by the th user in the constrained sum-capacity
achieving scheme (76). Then, if or ,
we have .

Proof: Consider . (The case of
can be proved similarly.)

i) The sum-rate of 1 is always achievable with

ii) If there exists , and does not end at 1,
such that , , then from Lemma 8,

.
iii) If for every , and does not end at 1, there

exists in the interior of such that .
For every , since does not end at 1, exists. Note

that separates the two segments , for the second
user. From Remark 3, and have to be two distinct
messages provided that both of them are (at least partly) active

for the second user. On the other hand, there are such seg-
ments , whereas the number of messages is
upper bounded by . Consequently, ,
such that , . In other words, for the second
user, there must be a segment with an odd index that is fully in-
active. By Lemma 9, in this case, .

Similarly to the symmetric case, we conclude that if the
number of messages used for either user is fewer than the
number used in the optimal scheme (76), the maximum achiev-
able sum-rate drops to 1.

APPENDIX C
PROOF OF LEMMA 4 AND 5

Proofs of Lemma 4: At the first receiver, the mes-
sage is decoded by treating all other messages

as noise, and has an
of .

At the second receiver, is first decoded and peeled off.
Suppose is also decoded at the second receiver (by treating

as noise) it has an of
. To equalize the rate constraints for

at both receivers, we need

Note that requires that . Otherwise,

, and the above . It implies that we

should not decode at the second receiver, i.e.,
is the only message of the th user, which is treated as
noise at the other receiver.

Proof of Lemma 5: At the second receiver, the
message is decoded by treating all other messages

as noise, and has an of
.

At the first receiver, is first decoded and peeled off. Next,
is decoded by treating as

noise, and has an of . To equalize

the rate constraints for at both receivers, we need

Note that requires that . Otherwise,
, and the above . It implies that,

even if the common message is allocated with all the
power , it still has a higher rate constraint at the second (first)
receiver than at the first (second) receiver.
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