
LEARNING TO RECOVER SPARSE SIGNALS

Sichen Zhong?, Yue Zhao†?, Jianshu Chen‡

? Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
† Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY

‡ Tencent AI Lab, Bellevue, WA

ABSTRACT

In compressed sensing, a primary problem to solve is to recon-
struct a high dimensional sparse signal from a small number of
observations. In this work, we develop a new sparse signal recov-
ery algorithm using reinforcement learning (RL) and Monte Carlo
Tree Search (MCTS). Similarly to OMP, our RL+MCTS algorithm
chooses the support of the signal sequentially. The key novelty is
that the proposed algorithm learns how to choose the next support
as opposed to following a pre-designed rule as in OMP. Empirical
results are provided to demonstrate the superior performance of the
proposed RL+MCTS algorithm over existing sparse signal recovery
algorithms.

Index Terms — Compressed Sensing, Reinforcement Learning,
Monte Carlo Tree Search, Basis Pursuit, Orthogonal Matching Pur-
suit

1. INTRODUCTION

We consider the compressed sensing (CS) problem [1–4], where for
a given matrix A ∈ Rm×n, m � n, and a (noiseless) observation
vector y = Ax0, we want to recover a k-sparse vector/signal x0
(k < m). Formally, it can be formulated as:

minimize
x

||x||0, (1)

subject to Ax = Ax0 (2)

The readers are referred to the seminal papers [1, 2] for a compre-
hensive survey of the compressed sensing problem.

There is a large collection of algorithms for solving the CS prob-
lem. Some foundational and classic algorithms include linear relax-
ation and convex optimization, matching and subspace pursuit [5–7],
as well as iterative thresholding [8, 9] among others. In particular,
two well-established methods are (i) Orthogonal Matching Pursuit
(OMP) and (ii) Basis Pursuit (BP). OMP recovers x0 by choosing
the columns of A iteratively until we choose k columns [10]. BP re-
covers x0 by solving minAx=y ||x||1 [2]. Because OMP and BP are
extremely well studied theoretically [1, 2] and empirically [11], we
use these two algorithms as the main benchmark methods to com-
pare against when evaluating the proposed RL+MCTS algorithm.

Recent advancements in machine learning have opened a new
frontier for signal recovery algorithms. Specifically, these algo-
rithms take a deep learning approach to CS and the related error
correction problem. The works in [12], [13], [14],and [15] ap-
ply ANNs and RNNs for encoding and/or decoding of signals x0.
Modern generative models such as Autoencoder (AE), Variational
Autoencoder (VAE), and Generative Adversarial Networks (GANs)

have also been used to tackle the CS problem with promising the-
oretical and empirical results [16–18]. These works involve using
generative models for encoding structured signals, as well as for
designing the measurement matrix A. Notably, the empirical results
in these works all use structured signals in x0. For example, in [17]
and [18], MNIST digits and celebrity images are used for training
and testing, while in [16], block sparsity for x0 is assumed.

Differently from the above learning-based works, our innovation
with machine learning is on signal recovery algorithms (as opposed
to signal encoding or measurement matrix design). We do not as-
sume the signals to be structured (such as images), but cope with
general sparse signals. This underlying model for x0 is motivated
by the same assumptions in the seminal work on universal phase
transitions by Donoho and Tanner in [11]. Moreover, we assume the
measurement matrix A is given. Extending to varying matrices A is
left for future investigation.

In this work, we approach the signal recovery problem using
reinforcement learning (RL). Specifically, we leverage the Monte
Carlo Tree Search (MCTS) technique with RL, which was shown to
achieve outstanding performance in the game of Go [19,20]. We fur-
ther introduce special techniques to reduce the computational com-
plexity for dealing with higher signal sparsities in CS. Experimental
results show that the proposed RL+MCTS algorithm significantly
outperforms OMP and BP for matrix A of various sizes.

2. COMPRESSED SENSING AS A REINFORCEMENT
LEARNING PROBLEM

In this section, we formulate the sparse signal recovery problem as a
special sequential decision making problem, which we will solve by
using RL and MCTS. In reinforcement learning, an agent interacts
with an environment by taking actions a based on the observed state
s, and the objective is to maximize the long-term cumulative reward
by picking the correct actions. The environment is modeled by a
Markov Decision Process (MDP) (S,A, P,R), where S denotes the
state space, A denotes the action space, P (s′|s, a) denotes the state
transition probability (i.e., the probability of transiting to state s′ ∈
S when taking action a at state s), and R denotes the immediate
reward received after the transition.

In the context of compressed sensing, a key challenge is to cor-
rectly choose the columns of A, or equivalently, the support of x0,
such that the problem (1) is solved, which is discrete and combi-
natorial in nature. To address this problem, we formulate it as a
sequential decision making problem: an agent sequentially chooses
one column of A at a time until it selects up to k columns such that
the constraint in (2) holds and the `0-loss in (1) is minimized. The
MDP for compressed sensing can then be defined as follows. A state
s ∈ S is a pair (y, S), where y is the observed signal generated ac-

cording to x0, and S ⊆ [n] is the set of the already selected columns
of A, where [n] , {1, . . . , n}. In our current setup, we assume the
matrix A is fixed, so a state is not dependent on the sensing matrix.
Terminal states are states s = (y, S) which satisfy one or more of
the following conditions: (i) |S| = k (the maximum possible signal
sparsity), or (ii) ||ASxs − y||22 < ε for some given ε. Here, AS
stands for the submatrix of A that is constructed by the columns of
A indexed by the set S, and xs is the optimal solution given that the
signal support is S,

xs , argmin
z
||ASz − y||22. (3)

For the action space, we define the set of all feasible actions at state
s = (y, S) to be As = [n] \ S. In other words, a valid action
from state s is to choose exactly one additional column from the
remaining ones. Note that in compressed sensing, when an action a
is taken (i.e., a new column ofA is selected) for a particular state s =
(y, S), the next state s′ is determined; that is, the MDP transition is
deterministic. Finally, we define our reward function R. In many
applications, one may favor minimizing the residual value instead of
minimizing the sparsity. This is due to the fact that observed signals
y are usually corrupted by noise, so it is impossible to find an exact
solution such that Ax = y. Motivated by this, (and granted that our
CS problem model is noise-free), we design the reward function as:

R(s) := −α||xs||0 − γ||ASxs − y||22 (4)

where s is again a state in the form (y, S), and α, γ > 0 are fixed
hyperparameters, and xs is determined by (3).

Different from existing compressed sensing algorithms, we pro-
pose to learn, via RL and MCTS, a policy to sequentially select the
columns of A and reconstruct the sparse signal x0, based on data
generated for training. We obtain the training data by generating k-
sparse signals x0 and computing the corresponding vectors y = Ax0
(each k is randomly generated from 1 to m). For each signal y, we
then use a “policy network” (to be explained in details later) along
with MCTS to choose columns sequentially until k columns have
been chosen. The traversed states will be used as additional training
data for updating the policy network. Such a strategy allows us to
move as much of the computational complexity as possible in testing
(i.e., performing the sparse signal recovery task) into training, which
shares a similar spirit to the work in [21].

A general challenge for reinforcement learning is that it has high
sample complexity; that is, it requires a large amount of training data
to learn an effective policy. Note that in compressed sensing, the
MDP transition probability is deterministic and known. This allows
us to use model-based information to perform MCTS-like planning,
which could greatly reduce the sample complexity in reinforcement
learning. Such a strategy of exploiting model-based information has
been successfully used in AlphaGo [20] and AlphaGo Zero [19] in
defeating top human players of Go. In this paper, we will leverage
model-based information in CS to effectively learn a sparse signal
recovery strategy based on data generated from the model.

3. THE RL+MCTS ALGORITHM

3.1. The Policy/Value Network fθ

A policy π(a|s) in our MDP is defined to be the probability of tak-
ing action a at state s. The objective is to learn a policy π that max-
imizes the long-term cumulative reward. To learn a policy in the
above sequential decision making formulation of CS, we employ a
single neural network fθ to jointly model the policy πθ(a|s) and the

state-value function Vθ(s), where θ is the model parameter (e.g., the
weights in a neural network). The policy πθ(a|s) defines a probabil-
ity over all actions for a given state s, where the action set includes
the possible next columns of A to pick and a stopping action. The
value Vθ(s) defines the long-term reward that an agent receives when
we start from the state s and follow the given policy. Our goal is to
learn the network fθ such that it takes a sequence of actions (i.e.,
pick the columns) that lead to the highest reward.

We design two sets of input features for the policy/value net-
work. The first set of input features is exactly (3), where xs is then
extended to a vector in Rn with zeros in components whose indices
are not in s. In other words, xs is the “best” solution for signal recov-
ery assuming that the support of the signal is given by s. We abuse
the notation xs to denote both (3) and its extended version with zero
padding, and the meaning of it will be clear given the context. The
second set of features is motivated by OMP, which is given by

λs := AT (y −ASxs) ∈ Rn,

where y − ASxs is the residual vector associated with the solution
xs. For the root state r in which no columns are chosen, xr is set
to be the n-dimensional zero vector, and λr := AT y. Note that the
OMP rule is exactly choosing the next column index whose corre-
sponding component in |λs| is the largest, where | · | is the absolute
value taken component wise.

The neural network architecture is chosen to be a fully connected
network with one hidden layer. We choose the activations of neurons
in the hidden layer to be ReLU units. The output layer will be soft-
max (for πθ(·|s)), and identity (for Vθ(s) ∈ R). Since there are
two outputs, we use categorical cross entropy and MSE as the loss
functions [22].

3.2. RL+MCTS Training Procedure

The goal of the RL+MCTS algorithm is to iteratively train the policy
network fθ . The overall training structure is given in Algorithm 1.

Algorithm 1 High-Level Training Procedure

1: initialize: j = 0, θ = θ0, θ0 random, fixed matrix A ∈ Rm×n
2: while j < i (where i is a hyperparameter) do
3: 1) generate training samples from each (y, x0) pair
4: by building a tree using Monte Carlo Tree Search (MCTS)
5: and the current fθ
6: 2) train/update neural network parameters to get θ̂ using
7: the training samples from step 1.
8: θ ← θ̂
9: j ← j + 1

10: end while

Most of the details arise in step 1) of Algorithm 1. Similar to the
AlphaGo Zero algorithm [19], the proposed RL+MCTS algorithm
uses Monte Carlo Tree Search (MCTS) as a policy improvement op-
erator to iteratively improve the policy network in the training phase.
For a randomly generated pair (y, x0), we use MCTS and the cur-
rent fθ to generate new training samples to feed back into the neu-
ral network. We note that in the testing phase, MCTS can also be
combined with the policy/value network to further boost the perfor-
mance. Specifically, for each given observation vector y and the de-
sired sparsity k, we run a number of MCTS simulations to construct
a search tree [23–25].

In our evaluation (cf. Section 4), we generate fixed random ma-
tricesA whose entries are sampled from independent and identically

distributed (i.i.d) standard Gaussian N (0, 1) distributions. We ran-
domly generate x0 with a sparsity of k and then compute y using
y = Ax0. k is randomly generated integer in {1, 2, ...,m − 1}
and the locations of the k nonzero elements in x0 are also randomly
chosen. This constitutes a single (y, x0) pair.

For the generated (y, x0) pair, we construct a tree according to
the steps given in Algorithm 2. Each node in this tree corresponds
to a state s, and each edge (s, a) corresponds to picking action a at
state s. Each edge (s, a) in the search tree is associated with two
quantities: the action value function Q(s, a) and the visiting count
N(s, a). Q(s, a) defines the average reward for selecting the edge
(s, a) in the search tree, and N(s, a) denotes the number of times
the edge (s, a) has been visited.

Once Algorithm 2 terminates via steps 5) and 6), then all states c
traversed are returned. We compute the reward and probability label
for each state. The reward label is the same for each traversed state,
which is the terminal reward (eq. 4) of the final state c was in. For
a given state s which was returned above, the probability label is
given by the vector 1∑

b N(s,b)
N(s, ·), i.e., the empirical frequencies

experienced in the simulated MCTS search.

Algorithm 2 Constructing a complete MCTS tree from a single
(x0, y) pair

1: Initialize: compute the features of the root state r: xr and λr .
The root state corresponds to the empty set with no column cho-
sen. Set current state, c← r.

2: Run M number of MCTS simulations on c according to PUCT
(7) to traverse the tree.

3: Select the action/column a which was visited the most (N(c, a)
largest). This leads us to a new state, denoted by c′.

4: Reassign c← c′.
5: if c is a terminal state then
6: return: all states c traversed
7: else c not a terminal state
8: Return to step 2
9: end if

3.3. Monte Carlo Tree Search (MCTS)

Step 2 in Algorithm 2 requires clarification. A single MCTS search
grows the tree by traversing from the root of the tree to some leaf,
expanding the leaf, and updating the edge weights of the traversed
path. We describe a single MCTS simulation in Algorithm 3.
Starting from the current root state s0, we select action at according
to a variant of the PUCT (Polynomial Upper Confidence bound for
Trees) policy [19, 26] until we reach the leaf-state of the tree:

at = argmax
a

{
Q(st, a) + cpuct · πθ(a|st)

√∑
bN(st, b)

N(st, a) + 1

}
(7)

where st denotes the state at time step t and cpuct is a hyper-
parameter which controls the tradeoff between exploration and
exploitation. Overall, PUCT treats πθ as a prior probability to bias
the MCTS search; PUCT initially prefers actions with high values
of πθ and low visit count N(s, a) (and hence exploration), but then
asymptotically prefers actions with high value Q(s, a) (and hence
exploitation). Once the search reaches a leaf-state, we expand the
leaf-state and then update Q(s, a) and N(s, a) over the edges that
have been traversed according to the rule given in [19]. An MCTS
search tree is constructed by running a fixed number of M simula-
tions at each depth. If we perform M Monte Carlo simulations at a

Algorithm 3 A single MCTS simulation/search
1: Input: current MCTS tree, state c = s0, t = 0
2: while st is not a leaf node do

3:
for each valid action a, compute: U(st, a) := Q(st, a)+

cpuct · πθ(a|st)
√∑

b N(st,b)

N(st,a)+1

4:
Compute the action a which gives the largest U(st, a).
Equivalently, let at = argmaxa U(st, a)

5:
Traverse to the next node from state st by taking action at.
Call this state st+1.

6: t← t+ 1
7: end while
8: Let the traversed states and actions from the above while loop

be {s0, a0, s1, a1s2, ..., av−1, sv}, where sv is a leaf node and
v ∈ N.

9: Construct new neighbor states/nodes of sv and corresponding
edges (sv, a). For each edge (sv, a), initialize edge weights to
be Q(sv, a) = 0, N(sv, a) = 0.

10: Update all edge weights traversed. In other words, for every
0 ≤ t ≤ v − 1, update in the following order:

N(st, at)← N(st, at) + 1 (5)

Q(st, at)←
(N(st, at)− 1)Q(st, at) + v(sv)

N(st, at)
(6)

11: Output: Updated MCTS tree with the leaf node sv expanded
and traversed edge weights updated.

fixed depth and state in the tree, then we perform a total of M × k
simulations for a single y.

3.4. Reducing Computational Complexity during Training by
Limiting the Tree Depth

When training the proposed RL+MCTS algorithm, we employ the
following technique for reducing the training complexity. First, we
remark that using MCTS as a policy improvement operator can po-
tentially be computationally expensive for relatively large matrix A
(depending on the available computation resources). To address this
challenge, we fix the maximum depth d of the MCTS tree; that is,
we build the MCTS tree as described in Section 3.3 until we reach a
depth of d. From then on, we roll-out the remaining levels of the tree
by simply using the OMP rule to select all remaining columns until
a total of k columns are chosen. This technique will be evaluated in
the experiments in the next section.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results for evaluating our
proposed RL+MCTS algorithm and comparing it against two bench-
mark methods: (i) OMP and (ii) BP (i.e., `1 minimization).

4.1. MCTS without Tree Depth Constraint

We begin by presenting results on the proposed RL+MCTS algo-
rithm without limiting the tree depth. In this setting, we will be train-
ing and testing on matrices of size 7× 15 and 15× 50. The training
parameters we use in our experiment is given in Table 2. At testing
time, we generate observed signals y via the following method. For
each sparsity level k between 1 and m, we generate 1000 k-sparse

signals x0. The k locations of the support of x0 are chosen ran-
domly, and each entry in x0 is generated i.i.d U [0, 1]. We compare
the proposed RL+MCTS policy/value network to OMP and BP. With
x̂ as the predicted sparse vector (by RL+MCTS, OMP, or BP, respec-
tively), we define successful recovery of x0 as ||x̂ − x0||22 < 10−3,
(i.e., “symbol” recovery, instead of just “bit” recovery).

Figure 1(a) and Figure 1(b) show the recovery success proba-
bility of different algorithms. We would like to emphasize that the
proposed RL+MCTS results shown in Figures 1(a)–1(b) are obtained
using the learned policy πθ(a|s) only, and no MCTS has been used
in the testing stage (which, if used, would lead to further improve-
ment). We see that even in this setting RL+MCTS still significantly
outperforms OMP and BP. The results imply that starting from a neu-
ral network with randomly initialized weights, it is indeed possible
for the network to learn an effective policy to choose the columns of
A.

We further note a key difference between the proposed RL+MCTS
algorithm and AlphaGo Zero: while the latter has finitely many
states, the state in the proposed RL+MCTS algorithm depends not
only on the current set of columns chosen, but also on the observa-
tions y. Hence, the state space in our application is continuous in
nature.

4.2. Average Prediction Times

In Table 1, we give the average prediction times per signal in sec-
onds. For OMP and BP, we use python libraries sklearn and cvx
respectively. To illustrate the speed during testing, we measure the
prediction times on a much less powerful machine than what was
used during training. While training was accomplished on a i7 4790
(3.6 GHz) with a single GTX 780, the testing speeds in Table 2 were
conducted on a Macbook Air with an Intel i5 clocked at 1.4 GHz and
an integrated Intel HD 5000. We predict that the testing speeds can
be greatly improved with a more powerful machine and further op-
timization in the source code. In general, we see that using just the
policy/value network for prediction is in general slower than OMP,
but on par with or better than BP.

4.3. MCTS with Limited Tree Depth

For higher sparsities k, the training time for the proposed RL+MCTS
algorithm would be significantly increased. Observe that each
(y, x0) corresponds to a single MCTS tree, and this MCTS tree
has depth exactly equal to k + 1. Since the total number of MCTS
simulations we conduct for a single (y, x0) is kM , we see that an
increase in k directly lengthens the training time. We will now show
results using the RL+MCTS algorithm with reduced complexity as
described in Section 3.4. Specifically, in a single MCTS search, we
expand the tree to depth d, and then proceed to follow the OMP
rule until a terminal state is reached. We now show the experiment
results for this version of the RL+MCTS algorithm. Specifically, we
consider the 10× 100 matrix in our evaluation.

• Training Details - The training details of this experiment can
be found in Table 2. We train two models. A) First, we train a
policy/value network using the vanilla RL+MCTS algorithm
without tree depth constraint. B) We train a policy/value net-
work by limiting the tree depth d = 6, which leads to a 40%
reduction in training time per sample.

• Testing Details (cf. Fig. 1(c)) - A) We test the policy/value
network trained from A) above. This policy/value network
will select each column without MCTS. B) We test the pol-
icy/value network trained from B) above. First, we test the

policy/value network to pick the first column; For all sub-
sequent columns up to k, we invoke the OMP rule. This is
equivalent to setting the tree depth during testing to d = 2 and
M = 0. Using the same policy/value network, we also con-
duct an experiment where d = 6 and the number of MCTS
simulations is set to 1500 during testing.

From Figure 1(c), note that the vanilla RL+MCTS policy
πθ(a|s) still performs slightly better than both OMP and BP. We see
that training the RL+MCTS algorithm with a fixed tree depth gives
us favorable results versus OMP, vanilla RL+MCTS policy πθ(a|s),
and BP. The green curve shows us that success probability can be
improved by increasing the number of MCTS simulations during
test time and the depth of the tree. Note that the d = 2 and M = 0
model is equivalent to the policy network choosing only the first
column, and then choosing the rest of the columns via OMP rule.
This model performs strictly better than solely using the policy net-
work (blue curve), but performs worse than the d = 6, M = 1500
model. What these results show is that the policy network learns to
take high-level actions (in picking only the first column), and that
successful recovery probability can be improved by increasing the
number of MCTS M during testing. Finally, the time speed up in
training vanilla RL+MCTS (Training model A with max tree depth)
decreases from 4.5 seconds per signal to 2.7 seconds (Training
model B with tree depth d = 6), a 40% reduction.

5. CONCLUSION

We have shown that the proposed RL+MCTS algorithm is a highly
effective sparse signal decoder for the compressed sensing problem
assuming no signal structure other than sparsity. Even without using
MCTS in testing, the RL+MCTS algorithm’s performance exceeds
that of existing sparse signal recovery algorithms such as OMP and
BP. The flexibility in the RL+MCTS algorithm’s design further of-
fers many interesting avenues for future research. For one, it is pos-
sible the features chosen in our model can be further improved. Sec-
ondly, since the true signal x0 is known in training, one may be able
to leverage the information about x0 to increase training sample ef-
ficiency. The training hyper-parameters may also be further tuned to
improve performance. Broader settings of problems such as noisy
observations and varying observation matrices A are under active
investigation.

(a) (b) (c)

Fig. 1. Signal Recovery accuracies of the 7 by 15 matrix, 15 by 50 matrix, and 10 by 100 matrices (from left to right)

Table 1. Average Prediction Times
7 by 15 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14

RL+MCTS 1.2e-3 2.0e-3 3.2e-3 3.7e-3 4.6e-3 5.5e-3
OMP 2.6e-4 4.2e-4 5.9e-4 6.1e-4 7.2e-4 8.2e-4
BP 2.4e-3 2.8e-3 3.2e-3 2.8e-3 2.9e-3 2.8e-3

15 by 50 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14
RL+MCTS 1.7e-3 2.3e-3 3.3e-3 3.9e-3 5.2e-3 5.9e-3 7.1e-3 8.7e-3 8.9e-3 1.0e-2 1.1e-2 1.2e-2 1.3e-2 1.4e-2

OMP 3.5e-4 4.7e-4 5.8e-4 6.5e-4 8.0e-4 8.6e-4 9.9e-4 1.1e-3 1.1e-3 1.2e-3 1.4e-3 1.5e-3 1.6e-3 1.7e-3
BP 7.5e-3 6.9e-3 7.2e-3 7.1e-3 7.9e-3 7.6e-3 8.0e-3 8.4e-3 7.6e-3 7.8e-3 8.1e-3 8.1e-3 7.8e-3 8.0e-3

10 by 100 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14
vanilla RL+MCTS 1.4e-3 2.3e-3 3.3e-3 3.9e-3 4.9e-3 5.9e-3 6.7e-3 7.8e-3 1.0e-2

RL+MCTS (d=2, M=0) 2.0e-3 1.8e-3 2.1e-3 2.4e-3 2.6e-3 3.2e-3 3.5e-3 3.6e-3 3.9e-3
RL+MCTS (d=6, M = 1500) 0.27 0.88 1.76 3.08 4.97 5.73 5.58 5.81 5.94

OMP 2.8e-4 4.7e-4 5.8e-4 6.4e-4 7.5e-4 8.3e-4 9.3e-4 1.0e-3 1.2e-3
BP 1.6e-2 2.3e-2 2.5e-2 2.3e-2 2.25e-2 2.24e-2 2.20e-2 2.1e-2 2.7e-2

Table 2. Training Hyper-Parameters for all matrix sizes
NN hyper-parameters (7× 15) (15× 50) (10× 100) description

Input 30× 1 100× 1 200× 1 Input(features xs and λs)
Hidden Layer 200 neurons 200 neurons 200 neurons activation ReLu

Output 17× 1 52× 1 102× 1 Output dimensions(p̂θ(·|s) and v̂θ(s))
θ 9400 weights 30400 weights 60400 weights

general hyper-parameters description
A ∈ R7×15 ∈ R15×50 ∈ R10×100 entries are i.i.dN (0, 1)
k ∈ {1, 2..., 6} ∈ {1, 2..., 14} ∈ {1, 2..., 9} randomly generated sparsity of x0 during training
x0 ∈ R15 ∈ R50 ∈ R100 randomly selected support locations,

where each component of x0, x0,i ∼ U [0, 1], ||x0||0 = k
i 100 200 100 num. of training iterations
e 400 400 100 num. signals (y, x) pairs generated
M 500 500 1500 num. of MCTS simulations
cpuct 2 2 3 exploration/exploitation factor
ε 10−5 10−5 10−5 determines threshold of terminal states
d max max max, 6 max tree depth of MCTS tree

6. REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
information theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[2] E. J. Candes, “The restricted isometry property and its implica-
tions for compressed sensing,” Comptes rendus mathematique,
vol. 346, no. 9-10, pp. 589–592, 2008.

[3] E. J. Candes and T. Tao, “Decoding by linear programming,”
IEEE Transactions on Information Theory, vol. 51, no. 12, pp.
4203–4215, Dec 2005.

[4] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The ap-
plication of compressed sensing for rapid MR imaging,” Mag-
netic Resonance in Medicine: An Official Journal of the Inter-
national Society for Magnetic Resonance in Medicine, vol. 58,
no. 6, pp. 1182–1195, 2007.

[5] D. Needell and R. Vershynin, “Uniform uncertainty principle
and signal recovery via regularized orthogonal matching pur-
suit,” Foundations of computational mathematics, vol. 9, no. 3,
pp. 317–334, 2009.

[6] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery

from incomplete and inaccurate samples,” Applied and compu-
tational harmonic analysis, vol. 26, no. 3, pp. 301–321, 2009.

[7] W. Dai and O. Milenkovic, “Subspace pursuit for compressive
sensing signal reconstruction,” IEEE transactions on Informa-
tion Theory, vol. 55, no. 5, pp. 2230–2249, 2009.

[8] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresh-
olding algorithm for linear inverse problems with a sparsity
constraint,” Communications on Pure and Applied Mathemat-
ics: A Journal Issued by the Courant Institute of Mathematical
Sciences, vol. 57, no. 11, pp. 1413–1457, 2004.

[9] M. Fornasier and H. Rauhut, “Iterative thresholding al-
gorithms,” Applied and Computational Harmonic Analysis,
vol. 25, no. 2, p. 187, 2008.

[10] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans-
actions on Information Theory, vol. 53, no. 12, pp. 4655–4666,
2007.

[11] D. Donoho and J. Tanner, “Observed universality of phase tran-
sitions in high-dimensional geometry, with implications for
modern data analysis and signal processing,” Philosophical
Transactions of the Royal Society of London A: Mathemati-
cal, Physical and Engineering Sciences, vol. 367, no. 1906,
pp. 4273–4293, 2009.

[12] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning
approach to structured signal recovery,” in Proc. 53rd Annual
Allerton Conference on Communication, Control, and Com-
puting (Allerton), 2015, pp. 1336–1343.

[13] A. Mousavi and R. G. Baraniuk, “Learning to invert: Signal
recovery via deep convolutional networks,” in Proc. IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2017, pp. 2272–2276.

[14] A. Adler, D. Boublil, M. Elad, and M. Zibulevsky, “A deep
learning approach to block-based compressed sensing of im-
ages,” arXiv preprint arXiv:1606.01519, 2016.

[15] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Bur-
shtein, and Y. Beery, “Deep learning methods for improved de-
coding of linear codes,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 119–131, 2018.

[16] S. Wu, A. G. Dimakis, S. Sanghavi, F. X. Yu, D. Holtmann-
Rice, D. Storcheus, A. Rostamizadeh, and S. Kumar, “Learn-
ing a compressed sensing measurement matrix via gradient un-
rolling,” arXiv preprint arXiv:1806.10175, 2018.

[17] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed
sensing using generative models,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 537–546.

[18] Y. Wu, M. Rosca, and T. Lillicrap, “Deep compressed sensing,”
arXiv preprint arXiv:1905.06723, 2019.

[19] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton
et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[20] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-
vam, M. Lanctot et al., “Mastering the game of go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587,
p. 484, 2016.

[21] Y. Zhao, J. Chen, and H. V. Poor, “A Learning-to-infer
method for real-time power grid topology identification,” arXiv
preprint arXiv:1710.07818, 2017.

[22] J. Friedman, T. Hastie, and R. Tibshirani, The elements of sta-
tistical learning. Springer series in statistics New York, NY,
USA:, 2001, vol. 1, no. 10.

[23] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo plan-
ning,” in European conference on machine learning. Springer,
2006, pp. 282–293.

[24] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, “An adaptive
sampling algorithm for solving markov decision processes,”
Operations Research, vol. 53, no. 1, pp. 126–139, 2005.

[25] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis
of the multiarmed bandit problem,” Machine learning, vol. 47,
no. 2-3, pp. 235–256, 2002.

[26] C. D. Rosin, “Multi-armed bandits with episode context,” An-
nals of Mathematics and Artificial Intelligence, vol. 61, no. 3,
pp. 203–230, Mar 2011.

