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ABSTRACT
An e-taxi fleet consumes a significant amount of energy daily, mak-

ing it a substantial electricity consumer. Unlike traditional con-

sumers, such as factories and buildings, a fleet coordinates charging

activities across both times and locations, offering considerable

flexibility in its energy demand. This allows a fleet to achieve sub-

stantial reductions in energy consumption in response to demand

response requests while maintaining transportation service quality.

To better understand and control this intrinsic energy flexibility,

we propose the eFlx framework for managing e-taxi fleets for de-

mand response. In the eFlx framework, we establish a model to

characterize the energy flexibility upon receiving a real-time de-

mand response request. We then investigate the energy flexibility

provisioning problem, formulated as a bi-level optimal control prob-

lem, which aims to optimize and maintain the energy flexibility of

the fleet for potential demand response requests that could arise at

any time. To achieve real-time flexibility provisioning, we develop

an efficient iterative algorithm to solve this problem. Data-driven

evaluations with NYC datasets demonstrate that eFlx achieves a

19. 98% greater reduction in energy demand compared to existing

solutions, without requiring extra charging or compromising the

quality of taxi service.
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Energy flexibility, e-taxi fleet, real-time provisioning, demand re-

sponse, grid services

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICCPS ’25, May 6–9, 2025, Irvine, CA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1498-6/2025/05. . . $15.00

https://doi.org/10.1145/3716550.3722026

ACM Reference Format:
Liangkai Zhou, Yue Zhao, Yukun Yuan, Ce Xu, and Shan Lin. 2025. eFlx:

Energy Flexibility Provisioning for E-taxi Fleets . In ACM/IEEE 16th Interna-
tional Conference on Cyber-Physical Systems (with CPS-IoTWeek 2025) (ICCPS
’25), May 6–9, 2025, Irvine, CA, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3716550.3722026

1 INTRODUCTION
As electric vehicle (EV) technologies mature, electric taxis and buses

are rapidly being deployed in numerous cities around the world.

Metropolitan areas, in particular, see EV fleets as a popular upgrade

to their transportation systems. For example, Shenzhen [1], Ams-

terdam [2], and London [3] have already implemented e-taxi fleets.

Additionally, Tesla-manufactured e-taxis are operating as yellow

cabs in New York City. With expanding infrastructure for charging

and improvements in battery technology, the global electric vehicle

taxi market is expected to grow with a compound annual growth

rate of 11.3% from 2024 to 2030 [4].

Notably, a modern e-taxi’s daily operations can consume more

than 50 kWh [5] energy. As such, the widespread deployment of

E-taxi fleets represents a very significant share of the electricity

demand. These dynamic loads, together with renewable generation

such as wind and solar, introduce substantial uncertainties and vari-

ability in power supply and demand, challenging the grid’s ability

to balance reliably. This issue is further exacerbated by ongoing

climate change.

Increased flexibility of power system operations has been widely

recognized as a key to successfully tackling these challenges. Vari-

ous Demand Response (DR) programs have been implemented to

leverage flexibility on the demand side to maintain the reliability

of the power grid in the presence of unpredictable supply-demand

imbalance [6]. For example, a building might adjust the HVAC set

temperature to reduce the air conditioning load [7], or industrial

production may need to slow down [8] in response to an emergency

DR request due to extreme weather conditions [9].

An e-taxi fleet, as a significant energy consumer, possesses uniquely

desirable characteristics as a DR provider. First, each EV is equipped

with batteries that serve as an energy reserve. The stored energy

is used for passenger service and replenished through charging at

stations. Moreover, in an e-taxi fleet, the workloads and charging

activities of numerous e-taxis can be coordinately shifted spatial-

temporally without affecting passenger service. This flexibility is

distinct from traditional DR resources, such as HVAC or factories,

https://doi.org/10.1145/3716550.3722026
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Figure 1: Three stages of a demand response program.

which i) are fixed in locations and ii) require continuous energy

supply to provide services. Therefore, an EV fleet offers uniquely

valuable flexibility during contingencies, helping the power system

manage unpredictable variations in demand and supply.

To address this issue, it is crucial to characterize the intrinsic

energy flexibility of an e-taxi fleet. Unlike other flexible demands

that can be directly measured, the flexibility of the e-taxi fleet

depends on passenger service requirements and e-taxi mobility.

In this paper, a model is established to estimate the maximum

energy savings that an e-taxi fleet can achieve using a flexible

dispatch algorithm for a given DR request, while maintaining the

same service quality. This model is valuable for the power grid to

analyze and design DR programs and for taxi companies to mitigate

any negative impacts on their transportation services. Notably, to

quantify the flexibility fairly, we specifically constrain the flexible

e-taxi dispatch algorithm to consume no more energy, at any time,

than the normal dispatch algorithm in the period leading up to a

DR service window. As such, we guarantee that there is no negative

impact on the grid from potential preparatory activities by an e-taxi

fleet before any DR service window starts. The energy flexibility

is thus achieved entirely from the optimized e-taxi workload and

mobility via centralized coordination.

To maximize the flexibility of an E-taxi fleet at all times — en-

suring it can provide flexibility whenever there is a need without

compromising transportation service quality — we study the flex-
ibility provisioning problem. Specifically, how can an e-taxi fleet

achieve and maintain a “state” of maximum flexibility so that it can

promptly respond to emergency DR requests, even without any

advance notice? We note that optimal provisioning of flexibility

at all times would provide the highest level of energy system re-

silience against unforeseeable DR needs. The problem is formulated

as a bi-level optimization problem whose computational complex-

ity is exponential. Considering the scale of our problem, existing

algorithms cannot solve it directly while meeting the runtime re-

quirements. To reach optimal energy flexibility provisioning in real

time, an efficient iterative algorithm is designed.

The contributions of this paper are as follows:

• To the best of our knowledge, this is the first work to investigate

energy flexibility of an e-taxi fleet. This work reveals that an e-

taxi fleet has intrinsic flexibility to achieve a substantial reduction

in energy demand by shifting workloads and charging activities

of e-taxis without affecting taxi services.

• An energy flexibility model is constructed to quantify the poten-

tial energy demand reduction of an e-taxi fleet in response to a

DR request.

• An energy flexibility provisioning problem is formulated, which

maximizes the energy flexibility of an e-taxi fleet ready to be

released at all times in response to any DR request. This is a

bi-level linear programming (LP) problem. To achieve optimal

real-time flexibility provisioning, an efficient iterative algorithm

is developed to solve the provisioning problem for large-scale

e-taxi fleets in practice.

• Using New York City datasets, a comprehensive data-driven eval-

uation is conducted: Without extra charging or reduced taxi

service quality, compared to reference DR solutions, our flexi-

bility provisioning solution increases the energy flexibility for a

two-hour emergency DR program by an additional 7.11MWh and

reduces the energy demand by 19.98% with minimal overhead.

2 ENERGY FLEXIBILITY
2.1 An e-taxi fleet in a DR program
To manage emergencies such as generator failures, inaccurate re-

newable forecasts, extreme weather, etc. [9], emergency DR pro-

grams alert consumers to reduce their energy demand for a set

period due to reserve shortages or reliability needs [10]. Partici-

pants are rewarded based on the demand reduction they provide.

Furthermore, in energy markets around the world, DR ancillary

service markets have been established where demand-side partici-

pants need to promptly respond to DR activation signals that can

arise at any time of the day. For instance, NYISO’s Demand-Side

Ancillary Services Program (DSASP) [11] allows DR providers to

bid in the day-ahead market for spinning reserve services. In such

markets, participants must promptly respond to the Independent

System Operator (ISO)’s real-time instructions throughout the day.

To stay ready to respond to any potential DR request at any time,

we consider an energy flexibility provisioning problem for an e-taxi

fleet that comprises three conceptual stages (cf. Fig. 1): provision, DR

service, and recovery [12]. First, the power system sends requests

to consumers inviting them to participate in DR services. Upon

receiving the request, an e-taxi fleet willing to participate in the

DR program can submit a bid. If the fleet wins the bid, it enters the

provision stage, standing by for activation instructions from the

power system operator and continuously managing its resources

(i.e., provision flexibility) to respond to activation signals that may

arise at any time. As such, the fleet is optimized to maximize energy

flexibility, ensuring that it is ready to be released at any time.

The service stage begins upon receiving activation instructions,

during which the fleet is required to provide load reduction (i.e., to

release flexibility) promptly (e.g., within 10 minutes [11]). Through-

out the service stage, the fleet minimizes its power demand to meet

the DR need, helping balance the overall supply and demand of

the power grid. Once the service stage ends, as specified by the

activation instructions and contractual terms, the fleet transitions

to the recovery stage, during which its load gradually ramps up,

and its flexibility is restored. We note that, in the context of DR

ancillary markets, a participating e-taxi fleet would in effect per-

form flexibility provisioning continuously at all times before a DR
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Figure 2: Charging demand of an e-taxi fleet in the presence
of a DR service request.

activation request arises, at which time the flexibility can then be

released to provide demand reduction.

2.2 A motivational example
This work is motivated by the observation that an e-taxi fleet has

significant potential to provide DR services without compromising

the quality of passenger service. To demonstrate this, we conduct a

case study to explore the power demand flexibility of a fleet partici-

pating in a DR program. We evaluate the fleet’s charging demand

under three distinct coordination algorithms: (i) Reference policy:

it focuses solely on optimizing passenger service quality, instead

of participating in DR programs; (ii) Response policy without flexi-

bility provisioning: It does not proactively deviate from the above

reference policy. Upon the arrival of a DR service stage, it switches

from the reference policy to flexible operations to minimize power

demand; (iii) Response policy with flexibility provisioning: it is

developed in this work with details in Sec. 5. Unlike (i) and (ii),

this method proactively schedules e-taxis during the “provisioning

stage” to ensure readiness for a potential upcoming DR service

stage. Meanwhile, all passengers must be picked up.

Fig. 2 illustrates the charging demand of an e-taxi fleet under

the three policies. All three policies maintain the same overall pas-

senger service. The vertical dashed lines divide the timeline into

the three stages of the DR program. During the service stage, from

17:20 to 19:20, the response policy significantly reduces energy

consumption while maintaining the quality of transportation. The

green area between the reference policy and the response policy

highlights the reduction in energy demand achieved by the e-taxi

fleet without flexibility provisioning. During the two-hour period,

the energy demand is reduced by 127.86 MWh when flexibility pro-

visioning is not implemented before the service stage. Comparison

of response policies with and without provisioning shows that pro-

visioning increases this reduction to 139.37 MWh. In summary, Fig.

2 demonstrates the viability of leveraging the energy flexibility of

the fleet to provide DR services, with provisioning proving essential

for enhancing the quality of the DR service.
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Figure 3: Flexibility vs. cost

2.3 Understanding e-taxis Fleet’s flexibility
The energy flexibility of an e-taxi fleet primarily comes from two

underlying characteristics: redundancy of e-taxis and energy re-

serve, as shown in Fig. 3. Here, the redundancy of e-taxis represents

the extra e-taxi supply after matching passenger demand, whereas

the energy reserve represents the amount of energy stored in the

batteries of all e-taxis. Intuitively, the fleet can provide high flexibil-

ity when there are a large number of extra e-taxis and many e-taxis

have high remaining battery levels, i.e., high e-taxi redundancy and

high energy reserve. Conversely, when there are few extra e-taxis

and many e-taxis have low battery levels, the fleet can hardly pro-

vide any energy demand reduction. To provide energy flexibility in

this latter scenario, the fleet has to sacrifice service quality.

Between the two extremes of e-taxi fleet states of very high and

low flexibility, transportation service needs may barely be met and

energy reduction cannot be easily achieved, since the fleet has some

but limited redundancy and energy reserve for energy-flexible oper-

ations. This work focuses on such challenging situations and studies

the research question of how to optimize e-taxi fleet operations to

achieve the maximum flexibility.

2.4 eFlx framework overview
Fig. 4 shows the energy flexibility (eFlx) framework design for the

e-taxi service. The core component is the e-taxi coordination algo-

rithm, which operates in three stages corresponding to the stages

of the DR service as shown in Fig. 1. In the provision stage, the

algorithm optimally dispatches e-taxis to enhance future flexibility

for DR services, ensuring that charging demand remains at normal

levels. During the service phase, the algorithm reduces charging

activities to deliver flexibility and meet the required energy demand

reductions. Importantly, transportation service quality should gen-

erally remain unaffected during this phase, although the e-taxi

fleet can opt to allow a controlled level of service compromise to

contribute more effectively to the DR service. In the final recovery

stage, the algorithm increases charging activities to rapidly restore

energy reserves, ensuring a swift resumption of full transportation

service.

The eFlx framework operates with two closed loops. The first

loop connects the power system and the e-taxi system. Power sys-

tem managers transmit various DR-related information, such as

service requests, bid selections, and activation instructions, to the

e-taxi fleet coordinator. Based on this received information, the
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appropriate phase of the coordination algorithm is triggered to de-

termine the optimal charging and dispatch decisions for the e-taxis.

These charging activities impact the overall power demand and this

feedback is continuously relayed to the power system managers.

The second loop functions within the e-taxi system itself. During

daily operations, the e-taxi coordinator generates dispatch com-

mands for passenger pickups. Passenger trip data is collected and

processed to monitor real-time e-taxi statuses and predict future

passenger demand. This information is then used by the coordinator

to optimize dispatch decisions, ensuring efficient fleet management.

3 E-TAXI SYSTEM MODEL
3.1 E-taxi system

3.1.1 System state. We begin by discretizing the spatial and

temporal domains. A day is divided into uniform time slots, indexed

by 𝑡 . The city area served by the e-taxi fleet is partitioned into 𝑛

regions, aligned with the power grid structure, i.e., each region is

powered by a common area substation. Let 𝑛 represent the number

of charging stations distributed across the city. The battery capacity

of an e-taxi is divided into �̂� discrete levels. In our evaluation, we

set �̂� to 15, which is sufficient to capture the energy dynamics of

the e-taxis. Let 𝑅𝐸𝑡 denote the remaining energy level of an e-taxi

at the beginning of slot 𝑡 . If an e-taxi charges its battery during slot

𝑡 , its energy for slot 𝑡 + 1 is 𝑅𝐸𝑡+1 = 𝑅𝐸𝑡 + �̂�2, where �̂�2 represents

the energy gained after charging for one time slot. Conversely, if

an e-taxi is in operation, either serving passengers or searching

for them, its energy level decreases to 𝑅𝐸𝑡+1 = 𝑅𝐸𝑡 − �̂�1, where �̂�1

represents the energy consumption after working for one time slot.

If an e-taxi is idle, waiting at a charging station for an available

port, its energy level remains unchanged: 𝑅𝐸𝑡+1 = 𝑅𝐸𝑡 .

Based on the location and operational status of an e-taxi, we

define four states for the e-taxi in this model: vacant, charging, wait-

ing, and occupied. Vacant: an e-taxi is cruising the streets, searching

for or picking up passengers. Charging: an e-taxi is actively being

charged at a charging station. Waiting: an e-taxi is idle at a charging

station, waiting for an available charging port. Occupied: an e-taxi

is in service, transporting passengers to their destination.

We define the state of the e-taxi system as the distribution of

e-taxis across different states and energy levels in spatial-temporal

dimensions, represented by 𝑉
𝑙,𝑡
𝑖

, 𝑂
𝑙,𝑡
𝑖
, and 𝐷

𝑙,𝑡
𝑗
. Here, 𝑉

𝑙,𝑡
𝑖

and 𝑂
𝑙,𝑡
𝑖

denote the number of vacant and occupied e-taxis, respectively, in

region 𝑖 with energy level 𝑙 at the beginning of time slot 𝑡 . Addition-

ally, 𝐷
𝑙,𝑡
𝑗

represents the number of e-taxis at the charging station 𝑗 ,

with remaining energy level 𝑙 , which includes both e-taxis actively

charging and those waiting for a charging port.

3.1.2 Decision variables. In this work, we focus on dispatch-

ing unoccupied e-taxis, specifically, vacant, charging, and waiting

taxis at the beginning of each time slot, using two types of dispatch

decisions: dispatch for charging and dispatch for serving passengers.

Let 𝑥
𝑙,𝑡
𝑖, 𝑗

∈ N represent the number of vacant e-taxis with remaining

energy level 𝑙 that are dispatched from region 𝑖 to charging station

𝑗 during time slot 𝑡 . Similarly, we define 𝑥𝑑
𝑙,𝑡
𝑗, 𝑗 ′ ∈ N as the number

of e-taxis with energy level 𝑙 dispatched from charging station 𝑗 to

station 𝑗 ′ in the same time slot. The total number of e-taxis initially

located in region 𝑖 and dispatched to charging station 𝑗 is expressed

as 𝑋
𝑙,𝑡
𝑖, 𝑗

= 𝑥
𝑙,𝑡
𝑖, 𝑗

+∑�̄�
𝑗 ′=1

𝑅𝑟𝑐
𝑖, 𝑗 ′𝑥𝑑

𝑙,𝑡
𝑗 ′, 𝑗 , where 𝑅

𝑟𝑐
𝑖, 𝑗 ′ ∈ {0, 1}𝑛×�̄� indicates

the geographical relationship between regions and charging sta-

tions. Specifically, 𝑅𝑟𝑐
𝑖, 𝑗 ′ = 1 when charging station 𝑗 ′ is located in

region 𝑖 , and 𝑅𝑟𝑐
𝑖, 𝑗 ′ = 0 otherwise.

For dispatching e-taxis to serve passengers, let 𝑦
𝑙,𝑡
𝑖,𝑖′ ∈ N denote

the number of vacant taxis with energy level 𝑙 dispatched from re-

gion 𝑖 to region 𝑖′ in slot 𝑡 . 𝑦𝑑
𝑙,𝑡
𝑗,𝑖

represents the e-taxis with energy

level 𝑙 dispatched from charging station 𝑗 to region 𝑖 in time slot 𝑡

for passenger service. The total number of e-taxis initially in region

𝑖 dispatched to region 𝑖′ is given by 𝑌
𝑙,𝑡
𝑖,𝑖′ = 𝑦

𝑙,𝑡
𝑖,𝑖′ +

∑�̄�
𝑗 ′=1

𝑅𝑟𝑐
𝑖′, 𝑗𝑦𝑑

𝑙,𝑡
𝑗,𝑖′ .

For simplicity, we represent the decision variables for charging dis-

patches as 𝑋 𝑡 = {𝑥𝑙,𝑡
𝑖, 𝑗
, 𝑥𝑑

𝑙,𝑡
𝑗, 𝑗 ′ }𝑙,𝑖, 𝑗, 𝑗 ′ , and those for passenger service

dispatches as 𝑌 𝑡 = {𝑦𝑙,𝑡
𝑖,𝑖′ , 𝑦𝑑

𝑙,𝑡
𝑗,𝑖
}𝑙,𝑖,𝑖′, 𝑗 at the start of time slot 𝑡 .

Finally, the number of available e-taxis must equal the number

of dispatched e-taxis, leading to the following constraints:

�̄�∑︁
𝑗=1

𝑥
𝑙,𝑡
𝑖, 𝑗

+
𝑛∑︁

𝑖′=1

𝑦
𝑙,𝑡
𝑖,𝑖′ = 𝑉

𝑙,𝑡
𝑖

,

�̄�∑︁
𝑗 ′=1

𝑥𝑑
𝑙,𝑡
𝑗, 𝑗 ′ +

𝑛∑︁
𝑖=1

𝑦𝑑
𝑙,𝑡
𝑗,𝑖

= 𝐷
𝑙,𝑡
𝑗
. (1)

Due to the inefficiency of mixed-integer programming for handling

large-scale taxi networks because of the problem’s size, we relax

𝑉
𝑙,𝑡
𝑖

, 𝑂
𝑙,𝑡
𝑖
, 𝐷

𝑙,𝑡
𝑗

and all decision variables to be within R.

3.2 E-taxi Supply and Passenger Demand
For any time slot of the day, the number of passenger requests

with specific departure and destination regions can be estimated

using historical records. Let 𝑟𝑡
𝑖
denote the number of passenger

requests in region 𝑖 during time slot 𝑡 . Moreover, let 𝑆
𝑙,𝑡
𝑖

represent

the number of e-taxis with remaining energy 𝑙 that are available

for serving passengers in region 𝑖 at time slot 𝑡 after the dispatch.

The transition of the e-taxi system can be described as follows:
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𝑆
𝑙,𝑡
𝑖

=

𝑛∑︁
𝑖′=1

𝑌
𝑙,𝑡
𝑖′,𝑖 , (2a)

𝑉
𝑙,𝑡+1

𝑖
=

𝑛∑︁
𝑖′=1

𝑃𝑣
𝑙,𝑡
𝑖′,𝑖𝑆

𝑙+�̂�1,𝑡
𝑖′ +

𝑛∑︁
𝑖′=1

𝑄𝑣
𝑙,𝑡
𝑖′,𝑖𝑂

𝑙+�̂�1,𝑡
𝑖′ , (2b)

𝑂
𝑙,𝑡+1

𝑖
=

𝑛∑︁
𝑖′=1

𝑃𝑜
𝑙,𝑡
𝑖′,𝑖𝑆

𝑙+�̂�1,𝑡
𝑖′ +

𝑛∑︁
𝑖′=1

𝑄𝑜
𝑙,𝑡
𝑖′,𝑖𝑂

𝑙+�̂�1,𝑡
𝑖′ . (2c)

Here, 𝑃𝑣
𝑙,𝑡
𝑖′,𝑖 , 𝑄𝑣

𝑙,𝑡
𝑖′,𝑖 , 𝑃𝑜

𝑙,𝑡
𝑖′,𝑖 , and 𝑄𝑜

𝑙,𝑡
𝑖′,𝑖 ∈ [0, 1] represent the mobility

patterns of e-taxis during the time slot 𝑡 :

• 𝑃𝑣
𝑙,𝑡
𝑖′,𝑖 denotes the probability that the unoccupied taxis in region

𝑖′ travel to region 𝑖 and remain vacant, either while searching

for passengers or after completing a passenger drop-off.

• 𝑃𝑜
𝑙,𝑡
𝑖′,𝑖 represents the probability that the unoccupied taxis in

region 𝑖′ travel to region 𝑖 while still delivering a passenger (i.e.,

the delivery is ongoing).

• 𝑄𝑣
𝑙,𝑡
𝑖′,𝑖 indicates the probability that the occupied taxis in region

𝑖′ travel to region 𝑖 without completing the passenger delivery.

• 𝑄𝑜
𝑙,𝑡
𝑖′,𝑖 denotes the probability that the occupied taxis in region 𝑖′

travel to region 𝑖 and complete their passenger delivery.

The mobility probabilities must satisfy the following constraints:∑𝑛
𝑖=1

𝑃𝑣
𝑙,𝑡
𝑖′,𝑖 + 𝑃𝑜

𝑙,𝑡
𝑖′,𝑖 = 1,

∑𝑛
𝑖=1

𝑄𝑣
𝑙,𝑡
𝑖′,𝑖 +𝑄𝑜

𝑙,𝑡
𝑖′,𝑖 = 1. The values for these

mobility patterns are derived from historical taxi mobility data.

3.3 Charging Supply and Request Model
This section illustrates the interaction between the e-taxi fleet and

the power grid. First, we define the charging supply from the power

grid and the charging requests from the e-taxi fleet. We then derive

the relationship between the charging decision variables and the

dynamic behavior of the e-taxi fleet.

The charging supply refers to the maximum number of e-taxis

that can be charged simultaneously at a given station. Let 𝑒𝑡
𝑗
repre-

sent the charging supply, meaning no more than 𝑒𝑡
𝑗
e-taxis can be

charged at charging station 𝑗 during time slot 𝑡 . On the other hand,

the charging request refers to the number of e-taxis that are actually

charged at station 𝑗 during time slot 𝑡 , with an initial remaining

energy level of 𝑙 , denoted as 𝑢
𝑙,𝑡
𝑗
. Since the number of charging

ports may be insufficient to accommodate all e-taxis dispatched to

a station, only a portion of the e-taxis can charge. The others will

wait idly. The variable 𝑢
𝑙,𝑡
𝑗

represents the number of e-taxis being

charged in region 𝑗 during time slot 𝑡 , whose initial energy level is

𝑙 . We express this with the following constraints:

𝑢
𝑙,𝑡
𝑗

≤
𝑛∑︁
𝑖=1

𝑥
𝑙,𝑡
𝑖, 𝑗

+
�̄�∑︁

𝑗 ′=1

𝑥𝑑
𝑙,𝑡
𝑗 ′, 𝑗 ,

�̂�∑︁
𝑙=1

𝑢
𝑙,𝑡
𝑗

≤ 𝑒𝑡𝑗 , (3)

which ensures that the number of e-taxis charging at station 𝑗 is

limited by the number of e-taxis dispatched to the station and the

available charging ports. And we can derive the number of e-taxis

in the charging station 𝑗 at the beginning of next time slot 𝑡 + 1 as:

𝐷
𝑙,𝑡+1

𝑗
= 𝑢

𝑙−�̂�2,𝑡
𝑗

+
𝑛∑︁
𝑖=1

𝑋
𝑙,𝑡
𝑖, 𝑗

− 𝑢
𝑙,𝑡
𝑗
, (4)

where the first term represents the e-taxis that gained energy

during charging, while the combination of the second and third

terms represents the e-taxis waiting idly for an available charging

port. For simplicity, we denote the charging decision variables as

𝑈 𝑡 = {𝑢𝑙,𝑡
𝑗
}𝑙, 𝑗 . Additionally, let S𝑡 = {𝑉 𝑙,𝑡

𝑖
,𝑂

𝑙,𝑡
𝑖
, 𝐷

𝑙,𝑡
𝑗
, 𝑆

𝑙,𝑡
𝑖
, 𝑢

𝑙,𝑡−1

𝑗
}

represent the state of the e-taxi system at time slot 𝑡 .

Let 𝑡 represent the time when the fleet starts provisioning flex-

ibility. Additionally, let 𝑇𝑏 and 𝜏 denote the duration of the ser-

vice stage and the provision stage, respectively, as specified in the

DR program. We also introduce an additional temporal parameter,

𝑇𝑐 , which defines the optimization horizon. Letting 𝑡 ′ denote the
current time slot, we denote the decision variables of policy 𝜋 in

the provision stage as X𝜋,𝑡 ′
pro

= {𝑋 𝑡𝑝𝑠 :𝑡𝑝𝑒 , 𝑌 𝑡𝑝𝑠 :𝑡𝑝𝑒 ,𝑈 𝑡𝑝𝑠 :𝑡𝑝𝑒 }, where
𝑡𝑝𝑠 = max{𝑡, 𝑡} and 𝑡𝑝𝑒 = max{𝑡 ′, 𝑡 + 𝜏 − 1}. Similarly, the deci-

sion variables of policy 𝜋 after the provision stage are denoted as

X𝜋,𝑡 ′
ser

= {𝑋 𝑡𝑝𝑒 :𝑡𝑠𝑒 , 𝑌 𝑡𝑝𝑒 :𝑡𝑠𝑒 ,𝑈 𝑡𝑝𝑒 :𝑡𝑠𝑒 }, where 𝑡𝑠𝑒 = max{𝑡 ′, 𝑡 +𝑇𝑐 −1}.

4 ENERGY FLEXIBILITY MODEL AND
PROVISIONING

4.1 Energy Flexibility Definition
In this work, we investigate the e-taxi fleet coordination policy de-

signed to provision energy flexibility for an upcoming DR request

that may arise at any time. The flexibility of an e-taxi fleet is defined

based on a specific fleet state S𝑡
and a coordination (of charging

and dispatch) policy 𝜋 . Given a known upcoming DR service win-

dow, the flexibility of an e-taxi fleet refers to the amount of energy
consumption for charging that the fleet can reduce during the DR

service stage, without any loss of passenger service. This reduction

in charging energy of 𝜋 captures the difference between two fleet

coordination policies: 1) the “baseline” policy 𝜋 itself, which does

not respond to the DR activation signal, and 2) a “response” policy

𝜋 res, which switches from baseline 𝜋 during the DR service stage

to respond to the DR activation signal and deliver flexibility.

As an example from Fig. 2, the flexibility of the reference policy

𝜋 ref is highlighted by the green area. It is defined as the gap in charg-

ing energy between 𝜋 ref (i.e., the baseline) and the response policy

without provisioning (i.e., switching from 𝜋 ref to DR response),

denoted by 𝜋 res (with a slight abuse of notation). At a high level,

we aim to achieve the optimal flexibility provisioning policy 𝜋∗,
which maximizes the flexibility of the fleet state at the beginning of

a DR service stage. The following sections will provide a detailed

explanation of these concepts.

4.2 Response Policy
The response policy 𝜋 res aims to maximally reduce the energy

demand for charging during the service stage while maintaining

the performance of the transportation service. The objective of 𝜋 res

is 𝑓res (S𝑡 ′ ,X𝜋,𝑡 ′
pro

,Xres,𝑡 ′
ser

) = ∑𝑡pe+𝑇𝑏
𝑡=𝑡pe

∑𝑛
𝑗=1

𝑢
𝑙,𝑡
𝑗,res

, where 𝜋 refers to a

baseline policy. This objective aims to minimize the total number

of charging e-taxis during the DR service stage. The coordination

decisions of the response policy after time slot 𝑡 ′ can be derived by

solving the following optimization problem:
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Problem 1. Flexibility Delivery Problem:

min

Xres,𝑡 ′
ser

𝑓res (S𝑡 ′ ,X𝜋,𝑡 ′
pro ,Xres,𝑡 ′

ser ), (5a)

𝑠 .𝑡 .

𝑛∑︁
𝑖=1

�̂�∑︁
𝑙=1

𝑢
𝑙,𝑡
𝑖,𝜋

≥
𝑛∑︁
𝑖=1

�̂�∑︁
𝑙=1

𝑢
𝑙,𝑡
𝑖,res 𝑡 ∈ [𝑡ps, 𝑡pe] (5b)

𝐽 𝑡trans,res ≥ 𝐽 𝑡trans,𝜋 𝑡 ∈ [𝑡 ′, 𝑡 ′ +𝑇𝑐 ], (5c)

𝑡 ′+𝑇𝑐∑︁
𝑡=𝑡 ′

𝐽 𝑡idle,res ≤ (1 + 𝜂)
𝑡 ′+𝑇𝑐∑︁
𝑡=𝑡 ′

𝐽 𝑡idle,𝜋 , (5d)

𝑋
𝑙,𝑡
𝑖, 𝑗
𝑑𝑐𝑡𝑖, 𝑗 = 0 𝑡 ∈ [𝑡 ′, 𝑡 ′ +𝑇𝑐 ), (5e)

𝑌
𝑙,𝑡
𝑖,𝑖′𝑑𝑠

𝑡
𝑖,𝑖′ = 0 𝑡 ∈ [𝑡 ′, 𝑡 ′ +𝑇𝑐 ), (5f)

𝑆
𝑙,𝑡
𝑖

= 0, 1 ≤ 𝑙 ≤ �̂�1, 𝑡 ∈ [𝑡 ′, 𝑡 ′ +𝑇𝑐 ), (5g)

Eq. (1) ∼ (4).

where 𝐽 𝑡trans =
∑𝑛
𝑖=1

min{𝑟𝑡
𝑖
,
∑�̂�
𝑙=1

𝑆
𝑙,𝑡
𝑖
} is the number of served pas-

sengers in slot 𝑡 and 𝐽 𝑡idle =
∑
𝑙 (
∑
𝑖, 𝑗 (𝑥𝑙,𝑡𝑖, 𝑗 +𝑦𝑑

𝑙,𝑡
𝑗,𝑖
)𝜑𝑖, 𝑗 +

∑
𝑖,𝑖′ 𝑦

𝑙,𝑡
𝑖,𝑖′𝜇𝑖,𝑖

′ +∑
𝑗, 𝑗 ′ 𝑥𝑑

𝑙,𝑡
𝑗, 𝑗 ′𝑣 𝑗, 𝑗

′ ) is the idle driving distance caused by the coordina-
tion decisions. Here, 𝜑𝑖, 𝑗 denotes the distance between region 𝑖 and
charging station 𝑗 ; 𝑣 𝑗, 𝑗 ′ denotes the distance between charging sta-
tions 𝑗 and 𝑗 ′; and 𝜇𝑖,𝑖′ denotes the distance between regions 𝑖 and
𝑖′.

In the above problem, the constraint (5b) restricts 𝜋 res from

charging beyond the baseline to avoid negative impacts on the

power grid. The constraint (5c) ensures that the response policy

does not reduce the taxi service quality compared to the reference

policy throughout the service stage. The constraint (5d) ensures

that the total idle driving distance under the response policy does

not exceed an increase of 𝜂 compared to the reference policy. All

dispatch decisions must be completed within one time slot to en-

sure practical feasibility. Thus, scheduling e-taxis to regions and

charging stations that cannot be reached within one time slot is

prohibited, as enforced by constraints (5e) and (5f). 𝑑𝑐𝑡
𝑖, 𝑗

∈ {0, 1}
and 𝑑𝑠𝑡

𝑖,𝑖′ ∈ {0, 1} indicate whether a vehicle can reach charging

station 𝑗 or region 𝑖′ from region 𝑖 within one time slot. Specifically,

if an e-taxi can reach region 𝑖′ (or charging station 𝑗 ) within time

slot 𝑡 , then 𝑑𝑠𝑡
𝑖,𝑖′ = 0 (𝑑𝑐𝑡

𝑖, 𝑗
= 0); otherwise, 𝑑𝑠𝑡

𝑖,𝑖′ = 1 (𝑑𝑐𝑡
𝑖, 𝑗

= 1). The

constraint (5g) ensures that e-taxis with an energy level below �̂�1 do

not serve passengers, thereby preventing vehicles from running out

of energy on the road. Given the relaxation on decision variables,

Problem 1 is an LP problem and the computational complexity is

polynomial in the problem size 𝑉𝑛 , where 𝑉𝑛 = 4𝑛2�̂�𝑇𝑐 + 𝑛�̂�𝑇𝑐 . For
simplicity, we use {𝑔

res,𝑘 (S𝑡 ′ ,X𝜋,𝑡 ′
pro

,X𝜋,𝑡 ′
ser

,Xres,𝑡 ′
ser

)} to denote the

constraints in Problem 1.

4.3 Provisioning Flexibility
The flexibility of an e-taxi fleet stateS𝑡 ′

under policy 𝜋 is quantified

as the disparity in the total number of e-taxis that are charged per

time slot during the service stage, between 𝜋 and 𝜋 res, i.e.,

𝐹pro (S𝑡 ′ ,X𝜋,𝑡 ′
pro

,X𝜋,𝑡 ′
ser

,Xres,𝑡 ′
ser

) =
𝑡pe+𝑇𝑏∑︁
𝑡=𝑡pe

𝑛∑︁
𝑗=1

𝑢
𝑙,𝑡
𝑗,𝜋

−
𝑡pe+𝑇𝑏∑︁
𝑡=𝑡pe

𝑛∑︁
𝑗=1

𝑢
𝑙,𝑡
𝑗,res

.

(6)

The first and second terms represent the energy demand under 𝜋

and 𝜋 res during the service stage, respectively. Thus, finding the

optimal provision policy 𝜋∗ can be formulated at a high level as:

max

𝜋
𝐹pro (S𝑡 , 𝜋, 𝜋 res) . (7)

Specifically, we solve the following optimization problem with an

outer problem (8a) and an inner problem (8c):

Problem 2. Flexibility Provisioning Problem:

max

X
𝐹pro (S𝑡 ′ ,X𝜋,𝑡 ′

pro ,X𝜋,𝑡 ′
ser ,Xres,𝑡 ′

ser ), (8a)

𝑠 .𝑡 . Xres,𝑡 ′
ser ∈ arg min

ˆXres,𝑡 ′
ser

{𝑓res (S𝑡 ′ ,X𝜋,𝑡 ′
pro , ˆXres,𝑡 ′

ser ) :

{𝑔res,𝑘 (S𝑡 ′ ,X𝜋,𝑡 ′
pro ,X𝜋,𝑡 ′

ser , ˆXres,𝑡 ′
ser )}}, (8b)

X𝜋,𝑡 ′
ser ∈ arg max

ˆX𝜋,𝑡 ′
ser

{𝐹pro (S𝑡 ′ , ˆX𝜋,𝑡 ′
ser ,X𝜋,𝑡 ′

ser′ ,X
𝑟𝑒𝑠,𝑡 ′

ser′ )} (8c)

𝑛∑︁
𝑖=1

�̂�∑︁
𝑙=1

𝑢
𝑙,𝑡
𝑖,𝜋

, ≤ 𝑃𝑡TRC ∀𝑡 ∈ [𝑡ps, 𝑡pe] (8d)

Eq. (1) ∼ (4), and (5e) ∼ (5g).

where (8c) captures the baseline policy 𝜋 without responding to the
DR service request. ser′ refers to another time period immediately
following the service stage. 𝜋 is assumed to deliver flexibility during
ser′ in constraint 8c. In constraint (8d), constant 𝑃𝑡TRC represents the
charging demand of the regular taxi services. This constraint prevents
overcharging during provisioning.

Problem 2 is, however, fundamentally difficult to solve. This is

because the provisioning policy 𝜋 , as the optimization variable, ap-

pears both in a) the outer problem to maximize the provisioned flex-

ibility and in b) the inner problem as the non-responding baseline

policy from which flexibility is computed. In other words, what we

optimize—the provisioning policy 𝜋—also determines the baseline
from which the demand reduction, i.e., flexibility, is computed. This

loop results in an essentially infinite-level optimization problem.

Specifically, another time period, ser
′
, is introduced immediately

following the service stage. This is because we need to extend

the provisioning stage to evaluate the non-responding 𝜋 , and an

additional service stage after it is needed. Thus, in order to de-

rive X𝜋,𝑡 ′

ser
′ , another time period ser

′′
after ser

′
must be introduced

again. As such, Problem 2 becomes an infinitely looped optimization

problem, which is difficult to solve directly. To break the infinite

loop and compute the flexibility, instead of comparing with the

non-responding provisioning policy in the inner problem as the

baseline, we employ a reference policy 𝜋 ref instead, essentially re-

ducing the infinite-level problem to a bi-level problem. Details are

provided below.
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4.4 Reference Policy
The reference policy 𝜋 ref aims to provide a consistent and effi-

cient transportation service. Specifically, it maximizes the num-

ber of passengers served 𝐽 𝑡𝑡𝑟𝑎𝑛𝑠 while minimizing idle driving dis-

tance 𝐽 𝑡
idle

, which are common objectives in taxi dispatch algo-

rithms [13, 14]. The objective of the reference policy is formulated

as 𝑓
ref

(S𝑡 ′ ,X𝜋,𝑡 ′
pro

,Xref,𝑡 ′
ser

) = ∑𝑡 ′+𝑇𝑐
𝑡=𝑡 ′ 𝐽 𝑡

trans
− 𝛽 𝐽 𝑡

idle
, where 𝛽 is a pos-

itive parameter that balances the trade-off between optimizing

service quality and minimizing idle driving distance. The reference

policy 𝜋 ref can be derived by solving the following problem:

Problem 3. Taxi Service Quality Optimization Problem:

max

Xref,𝑡 ′
ser

𝑓ref (S𝑡 ′ ,X𝜋,𝑡 ′
pro ,Xref,𝑡 ′

ser ), (9a)

s.t. Eq. (1) ∼ (4), (5e) ∼ (5g).

In Problem 3, X𝜋,𝑡 ′
pro

represents the coordination decisions that

determine the state of the e-taxi fleet at the beginning of the service

stage.Xref,𝑡 ′
𝑠𝑒𝑟 will serve as a baseline for flexibility calculation during

the service stage. Similarly, the computational complexity of Prob-

lem 3 is polynomial in the problem size𝑉𝑛 and𝑉𝑛 = 4𝑛2�̂�𝑇𝑐 +𝑛�̂�𝑇𝑐 .
For simplicity, we also use {𝑔

ref,𝑘 (S𝑡 ′ , 𝑋
𝜋,𝑡 ′
pro

, 𝑋
ref,𝑡 ′
ser

)} to denote the

constraints of Problem 3.

4.5 Bi-level formulation for the flexibility
provisioning problem

As mentioned above, the non-responding 𝜋 in constraints (8b) and

(8c) results in an infinitely looped optimization. Therefore, we re-

place 𝜋 with 𝜋 ref in constraints (8b) and (8c). Since 𝜋 ref aims to

solely maximize passenger service, it introduces tighter constraints

on passenger demand, which thus guarantees the feasibility of

the optimized provisioning policy 𝜋∗. The problem of flexibility

provisioning becomes:

Problem 4. Flexibility Provisioning Problem with reference policy
as baseline during the service stage:

max

X
𝐹pro (S𝑡 ′ ,X𝜋,𝑡 ′

pro ,Xref,𝑡 ′
ser ,Xres,𝑡 ′

ser ), (10a)

𝑠 .𝑡 . Xres,𝑡 ′
ser ∈ arg min

ˆXres,𝑡 ′
ser

{𝑓res (S𝑡 ′ ,X𝜋,𝑡 ′
pro , ˆXres,𝑡 ′

ser ) :

{𝑔res,𝑘 (S𝑡 ′ ,X𝜋,𝑡 ′
pro ,Xref,𝑡 ′

ser , ˆXres,𝑡 ′
ser )}}, (10b)

Xref,𝑡 ′
ser ∈ arg max

ˆXref,𝑡 ′
ser

{𝑓ref (S𝑡 ′ ,X𝜋,𝑡 ′
pro , ˆXref,𝑡 ′

ser ) :

{𝑔ref,𝑘 (S𝑡 ′ ,X𝜋,𝑡 ′
pro , ˆXref,𝑡 ′

ser )}}, (10c)

Eq. (1) ∼ (4), (5e) ∼ (5g) and (8d).

Remark 1. Problem 4 involves two levels, as shown in Fig. 5. Both
Problem 3 and Problem 1 constitute the lower-level problem, where
Xref,𝑡 ′
ser and Xres,𝑡 ′

ser are lower-level decision variables and X𝜋,𝑡 ′
pro act as

parameters. Equation (10a) represents the upper-level optimization
problem, with Problem 3 and Problem 1 serving as constraints. Only
those Xref,𝑡 ′

ser and Xres,𝑡 ′
ser that are optimal in the low-level problems

Provisioning stage decision (𝑋𝑝𝑟𝑜) space

𝑓𝑟𝑒𝑓

𝑓𝑟𝑒𝑠

Service stage decision (𝑋𝑠𝑒𝑟) space

Parameters for lower 

level problems

Constraint 

from 𝜋𝑟𝑒𝑠
Constraints 

from 𝜋𝑟𝑒𝑓

𝐹𝑝𝑟𝑜

(    ,    ,    ): A feasible bi-level solution for upper-level optimization problem

Figure 5: Bi-level structure of the flexibility provisioning
problem.

and also satisfy the upper-level constraints are considered feasible.
As a result, Problem 4 suffers from non-convexity and disjoint fea-
sible regions due to constraints (10c) and (10b). Moreover, evaluat-
ing the feasibility of any specific combination of decision variables
{X𝜋,𝑡 ′

pro ,Xref,𝑡 ′
ser ,Xres,𝑡 ′

ser } involves solving Problem 3 and 1 whose com-
putational complexity is polynomial in 4𝑛2�̂�𝑇𝑐 + 𝑛�̂�𝑇𝑐 .

One classic method to solve such a bi-level programming problem
is to convert the lower-level problem to its Karush–Kuhn–Tucker
(KKT) conditions[15], so that the problem can be reduced to a single-
level one. However, since one Lagrange multiplier is introduced for
every constraint, the scale of the converted problem is significantly
larger. Additionally, due to the complementary slackness condition,
the resulting problem is a quadratic programming (QP) problem.
This QP problem can be further transformed into a mixed integer
linear programming (MILP) problem[15], where the computational
complexity grows exponentially with the problem size. Under our
evaluation setting, Problem 4 consists of 1, 482, 570 variables before
conversion. Given this scale, it is impractical to solve it directly while
meeting the runtime requirement.

It is notable that when 𝜏 = 1, solving Problem 4 maximizes the

flexibility of the fleet in the next time slot. This allows the e-taxi fleet

to respond to DR requests arriving at any time and start delivering

flexibility immediately. Such a capability is especially valuable for

the DR programs designed for emergencies, e.g., DSASP[11] by

NYISO, where the start time is not scheduled in advance and a

quick response is required.

5 ENERGY FLEXIBILITY PROVISIONING
ALGORITHM

Due to the scale of both the upper-level problem and lower-level

problems, existing algorithms cannot solve Problem 4whilemeeting

runtime requirements. To address this challenge, we propose an

iterative algorithm that effectively solves Problem 4.

We first convert Problem 4 from a bi-level problem to a single

level problem by introducing a prediction of the reference policy.

By leveraging historical data from the e-taxi fleet operations, we

can predict the performance metrics 𝐽
𝑡,0

trans,ref
and 𝐽

𝑡,0

idle,ref
of the

reference policy for future time slots. Here, the superscript “0” in-

dicates that it is the initial estimation of 𝐽 𝑡
trans,ref

and 𝐽 𝑡
idle,ref

. By

replacing real-time predictions with historical predictions 𝐽
𝑡,0

trans,ref

and 𝐽
𝑡,0

idle,ref
, we can eliminate the constraint (10c) from Problem 4.
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Algorithm 1 Flexibility provisioning algorithm

Input: Fleet stateS𝑡 ′
; reference policy metrics 𝐽

𝑡,0

trans,ref
and 𝐽

𝑡,0

idle,ref

learned from historical data; number of charging ports 𝑒𝑡
𝑗
; pa-

rameters �̂�, �̂�1, �̂�2, 𝑇𝑐 , 𝑇𝑏 , 𝜏 , t’.

Output: Provision stage dispatch decisions X∗,𝑡 ′
pro

.

1: Initialize 𝑖 = 1.

2: Solve Problem 5 for initial solution X∗,𝑡 ′,0
𝑝𝑟𝑜 using 𝐽

𝑡,0

trans,ref
and

𝐽
𝑡,0

idle,ref
.

3: while X∗,𝑡 ′,𝑖
pro

not converged and maximum iteration not

reached do
4: Solve Problem 3 with fixed X∗,𝑡 ′,𝑖

pro
to update 𝐽

𝑡,𝑖

trans,ref
and

𝐽
𝑡,𝑖

idle,ref
.

5: Solve Problem 5 with 𝐽
𝑡,𝑖

trans,ref
and 𝐽

𝑡,𝑖

idle,ref
to update X∗,𝑡 ′,𝑖

pro
.

6: Update 𝑖 = 𝑖 + 1.

7: end while

Consequently, we can also remove Xref,𝑡 ′
ser

from Problem 1, so that

the constraints 𝑔
res,𝑘 (S𝑡 ′ ,X𝜋,𝑡 ′

pro
,Xref,𝑡 ′

ser
,Xres,𝑡 ′

ser
) can be simplified

to 𝑔
res,𝑘 (S𝑡 ′ ,X𝜋,𝑡 ′

pro
,Xres,𝑡 ′

ser
, 𝐽

𝑡,0

trans,ref
, 𝐽

𝑡,0

idle,ref
), where , 𝐽

𝑡,0

trans,ref
and

𝐽
𝑡,0

idle,ref
are treated as constants. Moreover, the objective of Problem

4 in equation (6) is equivalent to

𝐹pro (S𝑡 ′ ,X𝜋,𝑡 ′
pro

,Xres,𝑡 ′
ser

) = −
𝑡+𝑇𝑐∑︁
𝑡=𝑡

𝑛∑︁
𝑗=1

𝑢
𝑙,𝑡
𝑗,res

, (11)

which is identical to (5a), the objective of Problem 1. Thus, in Prob-

lem 4, the upper-level problem and the lower-level problem share

the same decision variables and objective. The problem can be

further reduced to a single-level problem:

Problem 5. Single-level formulation for the provisioning flexibil-
ity problem with a prediction of the reference policy:

min

X
𝑓res (S𝑡 ′ ,X𝜋,𝑡 ′

pro ,Xres,𝑡 ′
ser ) (12a)

𝑠 .𝑡 . {𝑔res,𝑘 (S𝑡 ′ ,X𝜋,𝑡 ′
pro ,Xres,𝑡 ′

ser , 𝐽
𝑡,0

trans,ref, 𝐽
𝑡,0

idle,ref)}, (12b)

Eq. (1) ∼ (4), (5e) ∼ (5g), (8d).

Let the solution policy of Problem 5 be denoted as 𝜋∗,0 and the

coordination decision variables be denoted as X∗,𝑡 ′,0
pro

and Xres,𝑡 ′,0
ser

.

Again, the superscript “0” indicates that it is the initial solution.

Similarly, the computational complexity of Problem 5 is polynomial

in the size of decision variables 𝑉𝑛 = 4𝑛2�̂�𝑇𝑐 + 𝑛�̂�𝑇𝑐 .
However, a reference policy predicted from historical data may

deviate due to uncertainty in passenger demand and e-taxi fleet

dynamics in real time. To mitigate the error caused by reference

policy deviation, we iteratively estimate the reference policy with

real-time e-taxi fleet state and passenger demand, and subsequently

update the provisioning policy. Specifically, in the 𝑖-th iteration,

we first predict the reference policy 𝜋 ref,𝑖 by solving Problem 3,

with control variables in the provisioning stage fixed as X∗,𝑡 ′,𝑖−1

pro
.

We denote the performance metrics of 𝜋 ref,𝑖 as 𝐽
𝑡,𝑖

trans,ref
and 𝐽

𝑡,𝑖

idle,ref
.

Next, we solve Problem 5 using 𝐽
𝑡,𝑖

trans,ref
and 𝐽

𝑡,𝑖

idle,ref
to update X∗,𝑡 ′

pro

Algorithm 2 E-taxi coordination algorithm

Input: Time of starting provisioning: 𝑡 ; DR activation signal arriv-

ing at 𝑡 + 𝜏 ; duration of time slots: 𝑡1 minutes; time horizon 𝑇

time slots; number of charging ports 𝑒𝑡
𝑗
; parameters �̂�, �̂�1, �̂�2,

𝑇𝑐 , 𝑇𝑏 , 𝜏 .

Output: Dispatch decisions 𝑥
𝑙,𝑡
𝑖, 𝑗
, 𝑥𝑑

𝑙,𝑡
𝑖, 𝑗
,𝑦

𝑙,𝑡
𝑖,𝑖′ ,𝑦𝑑

𝑙,𝑡
𝑖,𝑖′ ,𝑢

𝑙,𝑡
𝑖

where 𝑖, 𝑖′ ∈
[1, 𝑛], 𝑗 ∈ [1, 𝑛], 𝑙 ∈ [1, �̂�], 𝑡 ∈ [𝑡, 𝑡 +𝑇 ]

1: while At the beginning of time slot do
2: Update the current time slot as 𝑡 ′; collect e-taxi status and

update 𝑉
𝑙,𝑡 ′

𝑖
, 𝐷

𝑙,𝑡 ′

𝑖
, 𝑂

𝑙,𝑡 ′

𝑖
; Update driving distance constraint

parameters 𝑑𝑐𝑡
′
𝑖, 𝑗
, 𝑑𝑠𝑡

𝑖,𝑖′ ; Update passenger demand prediction

based on historical data.

3: if 𝑡 ′ ∈ [𝑡, 𝑡 + 𝜏) then
4: Derive dispatch decisions provisioning flexibility by

applying Algorithm 1 assuming 𝜏 = 1. ⊲ Provision stage

5: else if 𝑡 ′ ∈ [𝑡 + 𝜏, 𝑡 + 𝜏 +𝑇𝑏 ) then
6: Solve the Problem (1) for dispatch decisions delivering

the flexibility. ⊲ Service stage

7: else
8: Solve the Problem (3) for dispatch decisions optimizing

taxi service. ⊲ Recovery stage

9: end if
10: Send the coordination decisions of current time slot: 𝑥

𝑙,𝑡 ′

𝑖, 𝑗
,

𝑥𝑑
𝑙,𝑡 ′

𝑖, 𝑗
, 𝑦

𝑙,𝑡 ′

𝑖,𝑖′ , 𝑦𝑑
𝑙,𝑡 ′

𝑖,𝑖′ , 𝑢
𝑙,𝑡
𝑖

11: end while

and Xres,𝑡 ′
ser

. The solution in the 𝑖-th iteration is denoted as X∗,𝑡 ′,𝑖
pro

.

The complete algorithm is shown in Algorithm 1.

6 E-TAXI COORDINATION ALGORITHM
Due to the uncertainty of passenger demand and deviations be-

tween coordination decisions and actual e-taxi behaviors, we have

developed a real-time scheduling algorithm based on Model Predic-

tive Control (MPC), as presented in Alg. 2. At the beginning of each

time slot, the algorithm updates the e-taxi system state including

both spatial and energy distributions of the e-taxis. Passenger de-

mand and mobility patterns are also predicted based on historical

taxi trips. Before receiving the activation signal of the DR program,

the fleet stays in the provision stage. Alg. 1 is applied to provision

flexibility. Since the service stage is not scheduled in advance, we

always assume that the activation signal will arrive at the next time

slot (𝜏 = 1), ensuring that the fleet is prepared for a rapid response.

When the activation signal arrives, the fleet transitions to the ser-

vice stage. Throughout this stage, the algorithm solves the Problem

1 to deliver flexibility. In the recovery stage, the algorithm solves

the Problem 3 to optimize the quality of transportation service. This

stage often witnesses a rebound effect as the system is restored.

7 EVALUATION
7.1 Methodology
The dataset used to evaluate the flexibility model is sourced from

Manhattan and includes (i) data related to the power distribution

network [16], (ii) information on charging stations for EVs [17], and
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(iii) records of historical taxi trips [18]. Our data-driven analysis

aims to provide a comprehensive understanding of the model’s per-

formance in a real-world urban environment. The city is segmented

into 38 regions based on the power grid structure in Manhattan [16].

There are approximately 13,000 taxis operating throughout the city.

We assume that all the taxis in the dataset are e-taxis. The battery

energy of an e-taxi is divided into 15 levels, i.e. �̂� = 15. We set

�̂�2 = 3 for charging energy and �̂�1 = 1 for energy consumption.

In our evaluation, the length of a time slot is 20 minutes. Mul-

tiple experiments are conducted using historical passenger data

from various dates. The service stage of the DR program starts at

17:20 and lasts 2 hours, which is consistent with real-world DR pro-

grams [11, 19]. Based on historical data, the duration closely aligns

with both the peak power demand and passenger demand in urban

areas. This scenario presents the most challenging situation for the

e-taxi fleet to provision its flexibility, highlighting the robustness

and adaptability of the proposed system.

During the provision stage, we operate the e-taxi fleet using

various strategies to compare their performance:

• Taxi service with regular charging (TRC) [13]: it applies reference

policy introduced in Sec. 4.4 to optimize passenger service by

maximizing the number of passengers served, ignoring DR.

• Flexibility provisioning with DR window known in advance (Ora-
cle): it aims to minimize charging energy consumption during

the service stage. The start time of the DR service stage is known

at the beginning of the provision stage. With this additional

information, it acts as an oracle baseline.

• Taxi service with energy storage (TES): it maximizes overall

energy storage for the next time slot while meeting the quality

requirement of transportation service.

• Reactive charging to the e-taxis’s idling time (R2I): it provisions

flexibility by dispatching idle e-taxis to charging stations instead

of having them roam the streets in search of passengers, as in

the TRC strategy. If all of the charging stations are occupied, the

idle e-taxis remain stationary to conserve energy.

Except for Oracle, all other solutions do not have the information

about the DR window during the provisioning stage and always

prepare for a possible DR service stage starting in the next time slot.

During the service stage, all solutions adopt the response policy

(Problem 1) to reduce charging demand. In the recovery stage, they

shift to the reference policy (Problem 3) to maximize passenger

service. For each trial, we also operate the fleet with the reference

policy throughout all stages for comparison.

The length of the control horizon𝑇𝑐 is configured as 200 minutes,

covering both the provision and service stages to ensure accuracy

while maintaining computational efficiency. Throughout the sim-

ulation, all the solutions maintain a 100% transportation service

quality compared to TRC at each time slot. Moreover, during the

provisioning stage, no solution except TES is permitted to charge

more than the reference policy for fairness concerns. We show that

by properly controlling the spatiotemporal and energy distribution,
the fleet can increase its flexibility even without additional charg-
ing. To further explore the potential of flexibility provisioning, we

also conducted a parallel experiment where the charging limit is
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Figure 7: Charging demand during service stage

removed during the provisioning stage, i.e., constraint (8d) is ex-

cluded from Problem 5. This enables us to observe the flexibility

gain achieved by allowing more charging before the DR window.

Several measurement metrics are used in this work. (i) Energy

flexibility: the flexibility of each solution, except for the Oracle, is

estimated by Eq. (6), which calculates the charging gap between

one response policy and its non-responding baseline. For the Ora-

cle, which has knowledge of the DR window during provisioning,

flexibility is evaluated by directly calculating the charging demand

reduction compared to the reference policy, using the same initial

fleet state as the Oracle at the start of provisioning. (ii) Charging

demand: the total energy consumed during the provision and ser-

vice stages. We also assess the overhead of flexibility provisioning

based on idle driving distance and idle waiting time. (iii) Idle driving

distance: the average driving distance per e-taxi due to dispatching.

The distance covered by vacant e-taxis searching for passengers is

not considered idle driving, as it does not represent overhead from

coordination decisions. (iv) Idle waiting time: the average duration

an e-taxi spends waiting at charging stations. For R2I, the duration

for which the e-taxis remain stationary is also taken into account.

The experiment is carried out on a Windows 10 PC with an Intel

13700K CPU. The average run time to solve Algorithm 1 for each

time slot is 254.7 seconds.

7.2 Results
7.2.1 Flexibility and Energy Demand. Fig. 6 illustrates the flex-

ibility provided by each solution. When total charging is limited

to remain below the TRC during the provision stage, as shown

in Figure 6a, eFlx demonstrates a notable advantage. On average,

eFlx provides an additional 7.11 MWh flexibility over TRC (5.52%

improvement) and 5.45 MWh over R2I (4.18% improvement). In

the best-case scenario, eFlx delivers an extra 8.58% flexibility com-

pared to TRC and 10.25% compared to R2I. This is the additional
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flexibility achieved by eFlx from the optimized temporal, spatial,

and energy distribution of the e-taxis. Furthermore, with the ad-

ditional information of the DR service window, Oracle can serve

as a performance bound for the flexibility provisioning problem.

Notably, eFlx offers only 0.52% less flexibility than Oracle on aver-

age, indicating its high efficiency and its extreme closeness to the

optimal flexibility provisioning. When the charging limit is lifted,

eFlx shows yet another substantial improvement, as depicted in Fig.

6b. In this scenario, TES and R2I serve as baseline solutions without

charging limits for comparison. On average, eFlx provides an addi-

tional 21.67% flexibility over TRC, 13.48% over R2I, and 6.35% over

TES. In the best-case scenario, eFlx outperforms TRC by 43.49%,

R2I by 21.53% and TES by 9.67%, respectively. R2I, TES and eFlx

can provision extra flexibility when the charging limit is removed

since more energy is stored during the provisioning stage. Among

these, eFlx continues to outperform other solutions significantly.

Figure 7 illustrates the charging demand during the service stage

for each solution. When total charging is limited during the provi-

sion stage, as shown in Fig. 7a, eFlx decreases charging demand by

19.98% relative to TRC and by 16.36% compared to R2I on average.

In the best-case scenario, eFlx achieves a remarkable reduction of

59.77% compared to TRC and 63.46% compared to R2I. Again, the

reduction in charging demand shows that eFlx optimizes the fleet

state more effectively for delivering flexibility. Compared to Oracle,

eFlx charges only 0.51% more energy on average, again demonstrat-

ing its efficiency. When the charging limit is removed during the

provision stage, as depicted in Fig. 7b, eFlx continues to show signif-

icant improvements. With the extra charging during provisioning,

eFlx can also shift the demand temporally, further enhancing its

flexibility during DR service. In this scenario, eFlx reduces charging

demand by 42.97% compared to TRC, 24.73% compared to R2I, and

31.37% compared to TES on average. In the best-case scenario, eFlx

achieves reductions in charging demand of 89.01% compared to

TRC and 68.85% compared to R2I.

In Fig. 8, we also show the charging demand of a single trial with

charging limit to illustrate how eFlx behaves. We can see that eFlx

significantly reduces charging demand during the service stage

compared to TRC and R2I. Also, throughout the entire service stage,

eFlx’s charging demand is very close to that of Oracle.
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7.2.2 Overhead of provisioning flexibility. We also analyzed the

overhead of provisioning flexibility. Fig. 9 presents the charging

demand during the provision stage. When total charging is lim-

ited, eFlx has no overhead in charging. On the other hand, when

charging is not limited, eFlx charges 9.45% more than TRC on av-

erage. However, it also provides increased flexibility in return, as

discussed in Section 7.2.1. Fig. 10a and Fig. 10b display the average

idle driving distance and idle waiting time during the provision

stage. Specifically, idle driving distance increases on average by

2.06%, while idle waiting time rises by 2.12%. The increased idle

waiting time suggests that more vacant e-taxis remain stationary

rather than roaming on the streets. The slight increase in idle driv-

ing distance indicates that eFlx leads to an increase in dispatch

decisions. The minimal overhead shows the effectiveness of eFlx.

7.2.3 Duration of provision stage. Fig. 11 illustrates the perfor-
mance of eFlx during the service stage for various durations of

the provisioning stage. Both the flexibility and charging demand

during the service stage are shown, with TRC included as a refer-

ence. In all trials, the start and end times of the service stage are

fixed, while the start time of the provision stage varies based on

𝜏 . Provisioning flexibility for only 20 minutes yields an additional

0.64 MWh of flexibility on average. As the duration of the provision

stage increases, the capacity to optimize flexibility also improves,

highlighting the substantial impact of extended provisioning on

enhancing flexibility.

7.2.4 Provisioning under passenger demand prediction error. To
assess the robustness of eFlx, we evaluate its performance under

passenger demand prediction errors. The state-of-the-art taxi de-

mand prediction methods achieve a mean absolute error (MAE) of

less than 10, in terms of the number of passengers per region in

Manhattan for each half-hour interval [20, 21]. Considering the

difference in region size and time slot duration in our setting, it
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Figure 11: Performance vs. duration of provision stage.

Flexibility (MWh) Charging demand (MWh)

w/o error 135.96 30.70

w/ error 134.16 33.06

Table 1: eFlx flexibility and charging demand during service
stage under passenger demand prediction error.

is equivalent to a 10% error of the ground-truth demand. There-

fore, we introduce random noise to mimic the prediction error. As

presented in Table 1, eFlx’s flexibility reduces by 1.33% on average,

and the charging demand during the service stage increases by

7.69%. Despite these deviations, eFlx still outperforms TRC and

other baselines, even when they have perfect knowledge of future

demand. This demonstrates the effectiveness and robustness of

the eFlx design in handling uncertainties in the passenger demand

predictions.

8 RELATEDWORK
Electric Vehicle Coordination: The emergence of electric ve-

hicles has sparked a significant body of research focused on op-

timizing the coordination of electric vehicle charging activities

to enhance the quality of transportation service, as evidenced by

a range of studies [13, 14, 22, 23]. [14] addresses electric vehicle

rebalancing, focusing on uncertainties in taxi supply and passen-

ger demand to enhance service efficiency. [24] proposes a bi-level

spatiotemporal optimization framework to improve the long-term

profits of the e-taxi fleets. [22] presents a multi-agent reinforcement

learning framework for EV charging stations, using a user incentive

scheme to indirectly rebalance EVs and enhance operational effi-

ciency. Furthermore, researchers have been actively addressing the

adverse impacts of EV charging behaviors on the stability of power

systems [25–27]. Alizadeh et al. [26] propose a collaborative scheme

for power and transportation systems to achieve a socially opti-

mal outcome without sharing sensitive private information. [28]

proposes a charging system for a ride-hailing fleet which jointly

plans charging stations and battery swapping. [27] presents an

innovative e-taxi fleet coordination algorithm that enhances the

stability of power systems while concurrently maintaining trans-

portation services. In summary, this research distinguishes itself

from existing studies by quantifying e-taxi fleet energy flexibility

and presenting a novel approach to maximize this flexibility for

proactive responses to DR.

Energy Flexibility: The flexibility of power systems refers to

the ability to efficiently and reliably handle fluctuations and un-

certainties in electricity demand and supply across different time

frames [29]. This concept underscores the potential for both the

power supply [30–32] and the demand sides to contribute to the

adaptability of power systems. Demand-side management enhances

energy flexibility by adjusting demand levels through reductions

or rescheduling, thus mitigating imbalances between power sup-

ply and demand [33–35]. This study distinguishes itself from prior

research by: (i) exploring the untapped potential of e-taxi fleets

in spatial-temporal flexible power demand management, a novel

dimension that has not been sufficiently explored in the existing

literature. (ii) investigating proactive strategies to achieve an op-

timal flexible state, strategically preparing for upcoming demand

response requests, rather than responding reactively.

9 CONCLUSION
Due to inherent battery energy reserves and mobility, e-taxi fleets

possess great potential to participate in DR programs to support the

reliability of power grids. To understand the capacity of an e-taxi

fleet for reducing charging demand, we propose a flexibility model

and formulate the flexibility provisioning problem for an e-taxi

fleet. An efficient algorithm is developed to solve the provisioning

problem which optimizes the state of an e-taxi fleet to achieve and

maintain the highest energy flexibility at all times, ready to respond

to DR requests arriving at any time. A coordination strategy is then

presented to guide e-taxi fleets participating in such emergency

DR programs. Evaluations using real-world datasets illustrate that,

compared to existing solutions, our flexibility provisioning solution

achieves an additional 19.98% reduction in energy demand during

DR service stage without compromising the quality of transporta-

tion service. Further experiments of eFlx operating under additional

real-world uncertainties are left for future work.
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