
Generic Cospark of a Matrix Can Be Computed in
Polynomial Time

Sichen Zhong∗ and Yue Zhao†∗
∗Department of Applied Mathematics and Statistics, †Department of Electrical and Computer Engineering

Stony Brook University, Stony Brook, NY, 11794, USA
Emails: {sichen.zhong, yue.zhao.2}@stonybrook.edu

Abstract—The cospark of a matrix is the cardinality of the
sparsest vector in the column space of the matrix. Computing
the cospark of a matrix is well known to be an NP hard problem.
Given the sparsity pattern (i.e., the locations of the non-zero
entries) of a matrix, if the non-zero entries are drawn from
independently distributed continuous probability distributions,
it is shown that the cospark equals, with probability one, to a
particular number we term the generic cospark of the matrix. It is
proven that, unlike the cospark, the generic cospark of a matrix
can be computed in polynomial time. An efficient algorithm that
achieves this is offered.

I. INTRODUCTION

The cospark of a matrix A ∈ Rm×n,m > n1, denoted by
cospark(A), is defined to be the cardinality of the sparsest vec-
tor in the column space of A [1]. In other words, cospark(A) is
the optimum value of the following l0-minimization problem:

minimize
x

||Ax||0, (1)

subject to x 6= 0,

where ||Ax||0 is the number of nonzero elements in the
vector Ax. It is well known that solving (1) is an NP-hard
problem. Indeed, it is equivalent to computing the spark of an
orthogonal complement of A [1], where the spark of a matrix
is defined to be the smallest number of linearly dependent
columns of it [2]. Specifically, for A with full column rank, we
can find a full rank orthogonal complement A⊥ ∈ R(m−n)×m,
and (1) is equivalent to

minimize
x

||x||0, (2)

subject to A⊥x = 0, x 6= 0,

where the optimal value of (2) is the spark of A⊥, denoted by
spark(A⊥). Computing spark is known to be NP hard [3].

The role of cospark(A) has been studied in decoding under
sparse measurement errors where A is the coding matrix [1].
In particular, b cospark(A)−1

2 c gives the maximum number of
errors that an ideal l0-minimization decoder can tolerate for
exact recovery. Closely related to this is the role of spark(A⊥)
in characterizing the ability to perform compressed sensing
[1] [2]. Spark is also related to notions such as mutual
coherence [2] [4] and Restricted Isometry Property (RIP) [1]
[5] which provide conditions under which sparse recovery

1We note that the results in this paper can be straightforwardly generalized
to complex numbers.

can be performed using l-1 relaxation. Last but not least, in
addition to its role in the sparse recovery literature, cospark (1)
also plays a central role in security problems in cyber-physical
systems (see [6] among others).

In this paper, we study the problem of computing the
cospark of a matrix. Although it is proven that (1) is an NP-
hard problem, we show that the cospark a matrix “generically”
has can in fact be computed in polynomial time. Specifically,
given the “sparsity pattern”, (i.e., the locations of all the non-
zero entries of A,) cospark(A) equals, with probability one,
to a particular number which we term the generic cospark of
A, if the non-zero entries of A are drawn from independent
continuous probability distributions. We develop an efficient
algorithm that computes the generic cospark in polynomial
time. Due to space limitations, some of the proofs are omitted
here, and can be found in [7].

II. PRELIMINARIES

A. Generic Rank of a Matrix

For a matrix A ∈ Rm×n, we define its sparsity pattern as
S = {(i, j)|Aij 6= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Given a sparsity
pattern S, we denote AS to be the set of all matrices with
sparsity pattern S over the field R. Since there is a one to one
mapping between S and AS , we use S and AS interchangeably
to denote a sparsity pattern in the remainder of the paper.

The generic rank of a matrix with sparsity pattern S,
denoted by sprank(AS), is defined as follows.

Definition 1 (Generic Rank). Given S, the generic rank of
AS is sprank(AS) , supA∈AS rank(A).

Clearly, if sprank(AS) < n, the optimal value of (1) is
zero. We will thus focus on the case sprank(AS) = n for the
remainder of the paper.

The following lemma states that the generic rank indeed
“generically” equals to the rank of a matrix [8].

Lemma 1. Given S, rank(A) = sprank(AS) with prob-
ability one, if the non-zero entries of A are drawn from
independently distributed continuous probability distributions.

B. Matching Theory Basics

We now introduce some basics from classical matching
theory [9] which are necessary for us to introduce the results
in the remainder of the paper.

For a bipartite graph G(X,Y,E), a subset of edges N ⊆ E
is a matching if all the edges in N are vertex disjoint.
A max matching from X onto Y is a matching with the
maximum cardinality. A perfect matching from X onto Y is a
max matching where every vertex in Y is incident to an edge
in the matching.

Consider a (not necessarily maximum) matching N . A
vertex is called matched if it is incident to some edge in N ,
and unmatched otherwise. An alternating path with respect to
N is a path which alternates between using edges in E\N and
edges in N , or vice versa. An augmenting path w.r.t N is an
alternating path w.r.t. N which starts and ends at unmatched
vertices. With an augmenting path P , it can be easily shown
that the symmetric difference2 N ⊕ P gives a matching with
size |N |+ 1.

C. Generic Rank as Max Matching

We now introduce an equivalent definition of generic rank
via matching theory. A sparsity pattern AS can be represented
as a bipartite graph as follows [8]. Let G(X,Y,E) be a bi-
partite graph whose a) vertices X = {1, 2, . . . ,m} correspond
to all the row indices of AS , b) vertices Y = {1, 2, . . . , n}
correspond to all the column indices of AS , and c) edges
in E = S correspond to all the non-zero entries of AS .
Accordingly, we also denote the bipartite graph for sparsity
pattern S as G(X,Y, S).

The following lemma states the equality between
sprank(AS) and the max matching on G(X,Y, S) [8].

Lemma 2. Given G(X,Y, S), the generic rank sprank(AS)
equals to the cardinality of the maximum bipartite matching
on G.

Accordingly, finding a max matching on this graph using
the Hopcroft-Karp algorithm allows us to find the generic rank
with complexity O(|S|

√
m+ n) [10].

III. GENERIC COSPARK

Similarly to the supremum definition of generic rank (cf.
Definition 1), given the sparsity pattern of a matrix, we define
generic cospark as follows.

Definition 2 (Generic Cospark). Given S, the generic cospark
of AS is spcospark(AS) , supA∈AS cospark(A).

In a spirit similar to the multiple interpretations of generic
rank in Section II, we provide a probabilistic view and a
matching theory based view of generic cospark as follows.

A. Cospark Equals to Generic Cospark With Probability One

For any T ⊂ [m], let AT and AS
T represent the matrix

A and the set of matrices AS restricted to the rows T
respectively. A class of matrices which has cospark equal to
generic cospark are those which satisfy the following property:

2The symmetric difference of two sets S1 and S2 is defined as S1⊕S2 =
(S1 ∪ S2) \ (S1 ∩ S2).

Lemma 3. Given any sparsity pattern S so that
sprank(AS) = n for AS ⊂ Rm×n, for any A ∈ AS ,
if rank(AT) = sprank(AS

T), ∀T ⊆ [m], then
cospark(A) = spcospark(AS).

Proof. Suppose A satisfies the condition in the lemma. Let
x∗ = argminx 6=0 ||Ax||0, and let U = {i|aix∗ = 0}, where ai
is the ith row of A. Since AUx

∗ = 0, rank(AU) < n. Now
consider any other matrix C ∈ Rm×n with sparsity pattern S.
Since rank(CU) ≤ rank(AU) = sprank(AS

U) < n, ker(CU)
is also nonempty, meaning there exists a nonzero vector h ∈
Rn such that CUh = 0. Because AUcx∗ has no zero entries,
we also have ||CUch||0 ≤ ||AUcx∗||0 = ||Ax∗||0. This means
||Ch||0 = ||CUh||0 + ||CUch||0 ≤ ||AUcx∗||0 = ||Ax∗||0.
Hence, if x̂ = argminx6=0 ||Cx||0, it follows cospark(C) =
||Cx̂||0 ≤ ||Ch||0 ≤ ||Ax∗||0 = cospark(A). Thus,
spcospark(AS) = supC∈AS cospark(C) ≤ cospark(A),
which implies cospark(A) = spcospark(AS).

The property rank(AT) = sprank(AS
T),∀T ⊆ [m] is

known as the matching property of matrix A according to [11].
Now, we have the following theorem showing that the

generic cospark indeed “generically” equals to the cospark.

Theorem 1. Given S, cospark(A) = spcospark(AS) with
probability one, if the non-zero entries of A are drawn from
independently distributed continuous probability distributions.

Proof. If we have a matrix A with sparsity pattern S whose
nonzeros are drawn from independent continuous distributions,
then every submatrix of rows has rank equaling generic rank w.
p. 1 (cf. Lemma 1). This immediately implies cospark(A) =
spcospark(AS) w. p. 1 by Lemma 3.

B. A Matching Theory based Definition of Generic Cospark

Let G(X,Y, S) be the bipartite graph corresponding to
AS ⊆ Rm×n. For a subset of vertices Z ⊆ X , we
define the induced subgraph G(Z) as the bipartite graph
G(Z,N(Z), {(i, j) ∈ S|i ∈ Z , j ∈ N(Z)}), where N(Z)
denotes the vertices in Y adjacent to the set Z. In essence,
G(Z) is the bipartite graph corresponding to submatrices AS

Z .
We then have the following.

Lemma 4. Given G(X, Y, S), let OPT ⊂ X be a largest
subset such that the induced subgraph G(OPT) has a max
matching of size n− 1. Then spcospark(AS) = m− |OPT |.

The intuition behind this matching theory based definition
of spcospark(AS) is the following. To find the sparsest vector
in the image of A, it is equivalent to find a largest set of rows
in A, OPT , which span an n−1 dimensional subspace. With
such a subset OPT , we can find a vector x∗ which satisfies
AOPTx

∗ = 0, and it is clear that x∗ ∈ argminx 6=0 ||Ax||0.
Furthermore, based on the equivalence between generic rank
and max matching from Lemma 2, we arrive at the matching
theory based definition of generic cospark in Lemma 4.

C. An Illustrative Example

We now present an example ÃS in Figure 1, which we will
refer to throughout the paper for illustrating proof concepts

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6

X W ✶

J

C

B
I

W ✶

Fig. 1. Entries with × (either circled or not) represent non-zero entries, while
entries with ⊗ also represent edges in M. The three entries with ⊗ in rows
in C = {3, 4, 5, 6} represent edges in setMp. An output for Algorithm 1 is
Xf = XW∗ ∪B = {2, 3, 4, 5, 6, 7, 8, 9, 10}.

and our algorithms. In this example, X = {1, 2, ..., 10},
Y = {1, 2,, 6}, × (either circled or not) represents a non-
zero entry, and the empty entries are zero. The bipartite graph
representation of ÃS is given in Figure 2. A set of rows
OPT equals {1, 2, 3, 4, 5, 7, 8, 9, 10}. It can be verified that
sprank (G(OPT)) = 5. Hence, the nullspace of ÃOPT is
nonempty, and there exists a nonzero x such that ÃOPTx = 0.
As a result, spcospark(ÃS) = 10−9 = 1. We note that OPT
may (often) not be unique.

IV. EFFICIENT ALGORITHM FOR COMPUTING GENERIC
COSPARK

In this section, we introduce an efficient algorithm that com-
putes the generic cospark in polynomial time. This algorithm
is motivated by Lemma 4.

Given G(X,Y, S), for any size n − 1 subset of vertices
W ⊂ Y , we define XW = {x ∈ X|N(x) ⊆ W}. In other
words, XW is the index set of rows of AS with a zero entry
in the remaining coordinate v = Y \W . For example, in ÃS

(cf. Figure 2), with W = W ∗ = {2, 3, 4, 5, 6} ⊂ Y , we have
that XW∗ = {3, 4, 5, 6, 7, 8, 9, 10}.

We use XW as a basis to construct a candidate solution
for OPT . The idea is to add a maximal subset of vertices
B ⊂ Xc

W to XW , such that XW = XW ∪ B has a matching
of size n − 1 onto Y . Specifically, we keep adding vertices
t ∈ Xc

W to B as long as the submatrix corresponding to the
index set XW∪B has generic rank no greater than n−1. In the
example of ÃS (cf. Figure 2), ÃS

XW∗ has generic rank 4, which
is indicated by a max matching {(3, 3), (4, 5), (5, 6), (6, 4)}.
In this example, it can be verified that a) if B = {2}, then
sprank(ÃS

XW∗∪B) = 5, and b) the entire matrix ÃS has a
generic rank of 6, and thus B cannot be {1, 2}.

The following lemma shows adding a vertex to B can only
increase the generic rank of AS

XW∪B by at most one.

Lemma 5. Given G(X,Y, S), ∀Z ⊂ X and u ∈ X \ Z,
sprank(AS

Z∪{u}) ≤ sprank(AS
Z) + 1.

Remark 1. For a given W , depending on the order we visit
the vertices in Xc

W , we could end up with different sets B,

possibly of different sizes. However, we will prove that an
optimal solution is recovered regardless.

XW ,∀W are the candidate solutions for OPT , and we
obtain the optimal solution by choosing the XW with the
largest cardinality, i.e., Xf = argmaxW⊂Y,|W |=n−1 |XW |.
The generic cospark of AS then equals to m − |Xf |. The
detailed algorithm is presented in Algorithm 1.

Algorithm 1 Computing Generic Cospark
1: procedure SPCOSPARK(AS)
2: Initialization: Set B = ∅, t = ∅, and Xf = ∅
3: for all W ⊂ Y of cardinality n− 1 do
4: Scan through all m vertices in X

to find XW and let T = Xc
W

5: Calculate sprank(AS
XW

)
6: while sprank(AS

XW∪B∪{t}) ≤ n− 1 do
7: Let B = B ∪ t
8: Choose any element t from T , and

set T = T \ t
9: end while and let XW = XW ∪B

10: if |Xf | < |XW | then
11: Set Xf = XW

12: end if
13: Set B = ∅
14: end for
15: Return Xf , and spcospark(AS) = m− |Xf |.
16: end procedure

V. PROOF OF OPTIMALITY OF ALGORITHM 1
In this section, we prove that Algorithm 1 indeed solves

the generic cospark. It is sufficient to prove that the set Xf

returned by Algorithm 1 satisfies the definition of OPT in
Lemma 4, i.e., Xf is a subset of vertices of the largest size
such that the induced subgraph G(Xf) has a max matching of
size n− 1. Since G(Xf) by construction has a max matching
of size n− 1, it is sufficient to prove that Xf has the largest
size, i.e., |Xf | = |OPT |.

To prove this, let us consider an optimal set OPT ⊂ X .
We denote by M the set of n − 1 edges in a max matching
of G(OPT). We denote by W ∗ ⊂ Y the set of n− 1 vertices
in Y incident to edges in M, and denote by v = Y \ W ∗
the remaining vertex in Y . We show that, starting with W ∗,
Algorithm 1 returns an Xf such that |Xf | ≥ |OPT |, and
hence |Xf | = |OPT |. We note that the returned Xf may not
be the same as OPT .

As the notations for this section are quite involved, we
illustrate them with the example ÃS in Figure 2 to help
clarify the proof. In this example, an option of OPT is
{1, 2, 3, 4, 5, 7, 8, 9, 10}, and accordingly W ∗ = {2, 3, 4, 5, 6}.
The thick edges in Figure 2 and the entries with ⊗ in Figure
1 represent edges in M.

We first partition OPT into OPT = I ∪ J , I ∩ J = ∅,
where I is the set of n−1 vertices in OPT incident to edges in
M. J consists of the remaining vertices in OPT not incident
to edges in M (cf. Figure 1 and 2).

3

4

5

6

7

8

2

2

3

4

5

6

1

X Y

9

10

W ✶

v=Y ∖W ✶

X W ✶ N (X W ✶)

N (X W ✶)∖N (J)

N (J)

J

I∩X W ✶

C ∖ I

I

1

C

1

Fig. 2. Bipartite graph representation of ÃS . The regular black line segments
are unmatched edges in the bipartite graph. The thick line segments comprise
M, which forms a n− 1 matching from I to W ∗.

WLOG, we assume J is nonempty. This is because, if J
is empty, we immediately have |OPT | = n− 1 ≤ |Xf | since
each AXW

has generic rank n−1. We then have the following
lemma about XW∗ and sets I, J .

Lemma 6. For any such partition OPT = I ∪ J , we have
J ⊂ XW∗ , and I ∩XW∗ is nonempty.

Accordingly, we can partition XW∗ = C ∪ J , C ∩ J = ∅,
with C , XW∗ \ J . Starting from here, the general idea of
proving |Xf | ≥ |OPT | is to lower bound

|Xf | = |XW∗ ∪B| = |C ∪ J ∪B| = |C|+ |J |+ |B|. (3)

We immediately have the following lower bound on |B|:

|B| ≥ (n− 1)− sprank(AS
XW∗). (4)

This is because a) Algorithm 1 guarantees sprank(AS
W∗∪B) =

n − 1, and b) every time we add a new vertex t into B,
sprank(AS

W∗∪B) increases by at most one (cf. Lemma 5).
Since the initial generic cospark is sprank(AS

XW∗), we need
at least (n − 1) − sprank(AS

XW∗) vertices added into B to
reach sprank(AS

W∗∪B) = n− 1.
We next devote the majority of this section to provide a

lower bound on |C|.

A. Lower Bounding |C|
The key result we will rely on in this subsection is the

following:

Theorem 2. For the induced bipartite graph G(XW∗), there
exists a max matching whose edges are not incident to any
vertices in J .

To prove Theorem 2, we use Lemma 6 and start with a
partial matching Mp ⊂ M consisting of only edges which
are incident to vertices in I ∩ XW∗ . In other words, Mp =
{(i, j) ∈ M|i ∈ I ∩XW∗}. The idea is that we will build a

max matching starting from Mp, and this max matching will
not touch any vertices in J , thus proving Theorem 2.

The proof of Theorem 2 relies on the following two lemmas.

Lemma 7. For the induced bipartite graph G(XW∗) with
partial matching Mp, every vertex in N(J) is incident to
some edge in Mp, i.e., already matched.

Lemma 8. For the induced bipartite graph G(XW∗) with
partial matchingMp, there exists no augmenting path starting
from any j ∈ J .

In the example of ÃS , Mp = {(3, 3), (4, 5), (5, 6)}. We
see that every node in N(J) = {5, 6} ⊂ Y is indeed incident
to some edge in Mp. Lemma 8 implies that all augmenting
paths w. r. t. the partial matching Mp are from unmatched
vertices in C \I (where C = XW∗ \J) to unmatched vertices
in N(XW∗) \N(J).

A corollary which will prove necessary in proving Theorem
2 is the following:

Corollary 1. Suppose P is an augmenting path from c ∈ C\I
to u ∈ N(XW∗) \N(J) w. r. t. the matching Mp. Then for
any j ∈ J , there exists no alternating paths w. r. t. Mp from
j to any vertex in P .

Proof. Let P be an augmenting path from c to u w.r.t. Mp.
Suppose there exists an alternating path P ′jp from j to a
vertex p, where p is the first vertex in P encountered when
traversing P ′jp. P ′jp must have odd number of edges, since p
is a matched vertex in P and j is unmatched. Since P ′jp is
odd, p ∈ N(XW∗). Hence, if Pcp ⊂ P is the restriction of
P from c to p, then the alternating path Pcp must also have
odd length. The total length of P must be odd since P is an
augmenting path, which means the length of the alternating
path from p to u in P must be even.

Since Pjp is an odd alternating path from j to p, and
the alternating path from p to u in P is even, then the
alternating path from Pjp to u is odd. Furthermore, j and
u are unmatched, so this path is actually an augmenting path,
which immediately contradicts Lemma 8.

From Corollary 1, any alternating path starting from j w. r. t.
Mp is vertex disjoint to any augmenting path P . This implies
that a) any alternating path from j w. r. t. Mp ⊕ P remains
an alternating path, and b) there remains no augmenting path
starting from j w. r. t. Mp ⊕ P , i.e., Lemma 8 continues to
hold for G(XW∗) with a new matching Mp ⊕ P .

We are now ready to prove Theorem 2.

Proof of Theorem 2. Take Mp to be an initial matching onto
N(XW∗). By Lemma 7, all vertices in N(J) are now
matched, and Lemma 8 tells us we are left with augmenting
paths starting from unmatched vertices in C \ I to unmatched
vertices in N(XW∗) \ N(J). If P1 is one such augmenting
path, thenMp⊕P1 is a matching with one greater cardinality.
By Corollary 1, all alternating paths w.r.t Mp starting from
j are vertex disjoint to P1, which implies alternating paths
starting from j remain unchanged. Furthermore, Corollary 1

tells us Mp ⊕ P1 does not have augmenting paths starting
from j. Hence, the only remaining augmenting paths are still
from vertices C \I to vertices N(XW∗)\N(J). If P2 is such
an augmenting path, we can now repeat the above procedure
and compute the matching Mp ⊕P1 ⊕P2. Again, alternating
paths starting from j remain unchanged, and Mp ⊕ P1 ⊕ P2

contains no augmenting paths starting from j. We can repeat
this procedure until all augmenting paths from C \ I to
N(XW∗) \ N(J) are eliminated. Since the final matching
obtained this way has no augmenting paths, this final matching
is optimal, and its edges are incident to no vertices in J .

As a result of Theorem 2, there exists a max matching
on G(XW∗) that, on the “left hand side” of the graph, only
touches vertices in C = XW∗ \ J . Since the size of the max
matching of G(XW∗) equals to sprank

(
AS

XW∗

)
(cf. Lemma

2), we arrive at the following lower bound on |C|:

|C| ≥ sprank
(
AS

XW∗

)
(5)

B. Proof of the Optimality of Algorithm 1

We now show Algorithm 1 indeed returns the generic
cospark as in the following theorem.

Theorem 3. The output, Xf , of Algorithm 1 satisfies |Xf | =
|OPT |.

Proof. By the definition of OPT , |Xf | ≤ |OPT |. To prove
|Xf | ≥ |OPT |, starting from (3),

|Xf | = |C|+ |J |+ |B| (6)

≥ sprank(AS
XW∗) + |J |+ |B| (7)

≥ sprank(AS
XW∗) + |J |+ (n− 1)− sprank(AS

XW∗)
(8)

= |J |+ (n− 1) = |I|+ |J | = |OPT | (9)

where (7) is from (5), and (8) is from (4).

Remark 2. The output Xf of Algorithm 1 may not be the
same as the original OPT , although |Xf | = |OPT | always.
In the example of ÃS , Xf = {2, 3, 4, 5, 6, 7, 8, 9, 10}, whereas
the OPT (corresponding to W ∗ = {2, 3, 4, 5, 6}) at the start
of Algorithm 1 equals {1, 2, 3, 4, 5, 7, 8, 9, 10}.

VI. ALGORITHM COMPLEXITY

We now show that Algorithm 1 is efficient, and provide an
upper bound on its computational complexity.

Theorem 4. Given any S, Algorithm 1 computes
spcospark(AS) in O(nm(1 + |S|)) time.

Proof. Observe in the pseudocode above, step 3 is over n
iterations. For each iteration, steps 4 to 9 are the most
computationally expensive. Step 4 requires a O(m) scan of
the rows of AS , and step 5 requires us to compute a perfect
matching using Hopcroft-Karp algorithm, which can be done
in O(|S|

√
m+ n) time.

For the loop in steps 6 to 9, we do not need to recalculate
sprank(AS

XW∪B) every iteration. Given that we know the max
matching from the previous iteration, we only need to check

if the new vertex t added to B has an augmenting path to an
unmatched vertex in Y . Searching for this augmenting path
requires us to use breadth first search (BFS) or depth first
search (DFS), which can be computed in O(|S|) time. Since
there are O(m) iterations in the while loop, the total cost of
steps 6 to 9 is O(m|S|).

Hence, for every iteration of step 3, the total cost is O(m+
|S|
√
m+ n+m|S|) = O(m(1+|S|)) since n ≤ m. It follows

immediately our total running time is O(nm(1 + |S|)).

From Theorem 4, if AS is very sparse, the running time of
Algorithm 1 is essentially quadratic.

Remark 3. The algorithm’s bottleneck is in steps 6-9. For
each row t to add, we need to use a BFS. Since we need to
add O(m) such vertices, the total complexity for these steps is
O(m|S|) as in the above proof. To improve this complexity, we
would like to detect multiple candidate rows to add to B using
a single BFS. Indeed, it can be shown further that steps 6-9 of
Algorithm 1 can be improved to O(

√
m|S|) based on an idea

similar to Hopcroft-Karp matching [10]. This will improve the
total running time of Algorithm 1 to O(n

√
m|S|) .

VII. CONCLUSION

Given any sparsity pattern of a matrix, the cospark of the
matrix is always upper bounded by the generic cospark, and
is equal to the generic cospark with probability one if the
nonzero entries of the matrix are drawn from independent
continuous probability distributions. We have shown that,
although computing the cospark of a matrix is NP hard, the
generic cospark can be computed in polynomial time. We have
developed an efficient algorithm that achieves this.

REFERENCES

[1] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
2005.

[2] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via l-1 minimization,” Proceedings of the
National Academy of Sciences, vol. 100, no. 5, pp. 2197–2202, 2003.

[3] A. M. Tillmann and M. E. Pfetsch, “The computational complexity
of the restricted isometry property, the nullspace property, and related
concepts in compressed sensing,” IEEE Transactions on Information
Theory, vol. 60, no. 2, pp. 1248–1259, 2014.

[4] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Transactions on Information Theory, vol. 49, no. 12, pp.
3320–3325, 2003.

[5] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on pure and
applied mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[6] Y. Zhao, A. Goldsmith, and H. V. Poor, “Minimum sparsity of unobserv-
able power network attacks,” IEEE Transactions on Automatic Control,
to appear.

[7] S. Zhong and Y. Zhao, “Generic cospark of a matrix can be computed
in polynomial time,” arXiv preprint arXiv:1701.08925, 2017.

[8] K. Reinschke, Multivariable Control - A Graph-Theoretic Approach.
New York: Springer-Verlag, Lecture Notes in Control and Information
Sciences, vol. 108, 1988.

[9] R. Diestel, D. Král, and P. Seymour, “Graph theory,” Oberwolfach
Reports, vol. 13, no. 1, pp. 51–86, 2016.

[10] J. E. Hopcroft and R. M. Karp, “An nˆ5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on computing, vol. 2, no. 4,
pp. 225–231, 1973.

[11] S. T. McCormick, “A combinatorial approach to some sparse matrix
problems.” DTIC Document, pp. 39–41, 1983.

