Partitioning

System design

- Decomposition of a complex system into smaller subsystems.
- Each subsystem can be designed independently speeding up the design process.
- Decomposition scheme has to minimize the interconnections between the subsystems.
- Decomposition is carried out hierarchically until each subsystem is of manageable size.

Module 1
Module 2
Module 3
Module n
Interface Information

Algorithms for VLSI Physical Design Automation
Partitioning

Partitioning of A Circuit

Input size = 48

Cut 1 = 4 Cut 2 = 4
Size 1 = 15 Size 2 = 16 Size 3 = 17
Partitioning at different levels

Partitioning

System Level
Board Level
Chip Level

System Level
Board Level
Board Level
Chip Level
Chip Level
Chip Level

Board
Chip
Chip
Chip

System for VLSI Physical Design Automation
Hierarchical Partitioning

The levels of partitioning are:

1. System Level Partitioning: A system is partitioned into a set of subsystems such that each subsystem can be designed and fabricated independently on a single PCB.

2. Board Level Partitioning: The circuit assigned to a PCB is partitioned into subcircuits such that each subcircuit can be fabricated as a VLSI chip.

3. Chip Level Partitioning: The circuit assigned to a chip is partitioned into smaller subcircuits. Chip level partitioning is physically not necessary.
Partitioning

System Hierarchy

![Diagram of a system hierarchy]

Algorithms for VLSI Physical Design Automation
No critical net should cut boundaries if delay is not justified.
Problem Formulation

1. Interconnections between partitions:
 \[Obj_1 : \sum_{i=1}^{k} \sum_{j=1}^{k} c_{ij}, (i \neq j) \text{ is minimized} \]

2. Delay due to partitioning:
 \[Obj_2 : \max_{p_i \in P} (H(p_i)) \text{ is minimized} \]

3. Number of terminals:
 \[Cons_1 : \text{Count}(V_i) \leq T_i, \; 1 \leq i \leq k \]

where,
- \(c_{ij} \) is the cutsize between partitions \(V_i \) and \(V_j \).
- \(H(p_i) \) is the number of times a hyperpath \(p_i \) is cut.
- \(\text{Count}(V_i) \) is the terminal count for partition \(V_i \).
Problem Formulation

1. Area of each partition:
 \[\text{Cons}_2 : A_i^{\text{min}} \leq \text{Area}(V_i) \leq A_i^{\text{max}}, \quad i = 1, 2, \ldots, k \]

2. Number of partitions:
 \[\text{Cons}_3 : K_{\text{min}} \leq k \leq K_{\text{max}} \]

The partitioning problem at any level or design style deals with one or more of the above parameters.
Classification of Partitioning Algorithms

Partitioning Algorithms

- Group Migration
 - Kerninghan-Lin
 - Fiduccia-Mattheyses
 - Goldberg Burstein
 - Component Replication
 - Ratio Cut

- Simulation Based
 - Simulated Annealing
 - Simulated Evolution

- Performance Driven
 - Lawler, Levitt, Turner

- Others
 - Metric Allocation
Kernighan-Lin Algorithm

- It is a bisectioning algorithm
- The input graph is partitioned into two subsets of equal sizes.
- Till the cutsize keeps improving,
 - Vertex pairs which give the largest decrease in cutsize are exchanged
 - These vertices are then locked
 - If no improvement is possible and some vertices are still unlocked, the vertices which give the smallest increase are exchanged

Kernighan-Lin Algorithm

Algorithm KL
begin
 INITIALIZE();
 while (IMPROVE(table) = TRUE) do
 (* if an improvement has been made during last iteration,
 the process is carried out again. *)
 while (UNLOCK(A) = TRUE) do
 (* if there exists any unlocked vertex in A,
 more tentative exchanges are carried out. *)
 for (each a ∈ A) do
 if (a = unlocked) then
 for(each b ∈ B) do
 if (b = unlocked) then
 if (D_{max} < D(a) + D(b)) then
 D_{max} = D(a) + D(b);
 a_{max} = a;
 b_{max} = b;
 TENT-EXCHANGE(a_{max}, b_{max});
 LOCK(a_{max}, b_{max});
 LOG(table);
 D_{max} = -∞;
 ACTUAL-EXCHANGE(table);
 end.
 end.
 end.
 end.
 end.
 end.
end.
Partitioning

A Graph Bisected by K-L Algorithm

(a) Initial Bisections

(b) Final Bisections

<table>
<thead>
<tr>
<th>i</th>
<th>Vertex Pair</th>
<th>$g(i)$</th>
<th>$\sum_{j=1}^{i} g(i)$</th>
<th>Cutsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>(3,5)</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>(4,6)</td>
<td>5</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(1,7)</td>
<td>-6</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>(2,8)</td>
<td>-2</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
Partitioning

Drawbacks of K-L Algorithm

- K-L algorithm considers balanced partitions only.
- As vertices have unit weights, it is not possible to allocate a vertex to a partition.
- The K-L algorithm considers edges instead of hyperedges.
- High, $O(n^3)$ complexity.
Partitioning

Fiduccia-Mattheyses Algorithm

This algorithm is a modified version of Kernighan-Lin Algorithm.

- A single vertex is moved across the cut in a single move which permits handling of unbalanced partitions.
- The concept of cutsize is extended to hypergraphs.
- Vertices to be moved are selected in a way to improve time complexity.
- A special data structure is used to do this.
- Overall time complexity of the algorithm is $O(n^2)$.

Data Structure Used in Fiduccia-Mattheyses Algorithm

Partitioning

Vertex # #Vertex # #Vertex # #Vertex
1 2 3 4 5

List of free vertices

Vertex
1 2 3 4 5

Ist Partition

IIInd Partition
Goldberg and Burstein Algorithm

- Performance of K-L algorithm depends on the ratio R, of edges to vertices
- K-L algorithm yield good bisections if $R > 5$
- In a typical VLSI design problem, $1.8 \leq R \leq 2.5$
- Goldberg and Burstein improve K-L algorithm to increase R
 - Find a matching M in graph G
 - Each edge in the matching is contracted
to increase the density of graph.
 - Any bisection algorithm is applied
to the modified graph
 - Edges are uncontracted within each partition.

M. K. Goldberg and M. Burstein, ICCD, 1983.
Example of Goldberg and Burstein Algorithm

(a) Matching of Graph

(b) After Contracting
Component Replication to Reduce Cutsize

- Vertices are replicated to improve cutsize
- Good results if limited number of components are replicated

Fig(a) shows a 4-way partition before component replication with total cutsize=16
Fig(b) shows the 4-way partition after component replication with total cutsize=10

Partitioning

Comparison of Different Circuits

<table>
<thead>
<tr>
<th>Circuit Type</th>
<th>Maximum Circuit Expansion</th>
<th>Net Cutsize Reduction</th>
<th>Component Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinational</td>
<td>10%</td>
<td>41%</td>
<td>3.2%</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>43%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Industrial</td>
<td>10%</td>
<td>15%</td>
<td>0.7%</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>9%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>
Partitioning

Ratio Cut

- Locates natural clusters in the circuit
- Forces partitions to be of equal size
- Each edge has a capacity defined for it
- The algorithm tries to minimize the ratio of capacity of the edge going in between the partitions to the product of number of nodes in the partitions.

Simulated Annealing Algorithm

- Concept analogous to the annealing process used for metals and glass.
- A random initial partition is available as input.
- A new partitioning is generated by exchanging some elements.
- If the partitions improve the move is always accepted.
- If not then the move is accepted with a probability which decreases with the increase in a parameter called temperature T
The Annealing curve

Partitioning

Global Minima

Local Minima’s

Temp

Time

Algorithms for VLSI Physical Design Automation

©Sherwani 92

4.22
Simulated Annealing Algorithm

Algorithm SA
begin
 \(t = t_0; \)
 \(cur_part = ini_part; \)
 \(cur_score = \text{SCORE}(cur_part); \)
repeat
 repeat
 \(comp1 = \text{SELECT}(part1); \)
 \(comp2 = \text{SELECT}(part2); \)
 \(trial_part = \text{EXCHANGE}(comp1, comp2, cur_part); \)
 \(trial_score = \text{SCORE}(trial_part); \)
 \(\delta s = trial_score - cur_score; \)
 if \((\delta s < 0) \) then
 \(cur_score = trial_score; \)
 \(cur_part = \text{MOVE}(comp1, comp2); \)
 else
 \(r = \text{RANDOM}(0, 1); \)
 if \((r < e^{-\frac{\delta s}{\beta}}) \) then
 \(cur_score = trial_score; \)
 \(cur_part = \text{MOVE}(comp1, comp2); \)
 until (equilibrium at \(t \) is reached)
 \(t = \alpha t \quad (* 0 < \alpha < 1 *) \)
until (freezing point is reached)
end.
Partitioning

Simulated Evolution Algorithm

- Each feasible solution to the problem is considered as a generation.
- The bad individuals in the population are eliminated to generate a new generation.

Simulated Evolution Algorithm

Algorithm SE
begin
 $S = S_0$; (* initial state *)
 $S_{BEST} = S$; (* save initial state *)
 $p = p_0$; (* initialize control parameter *)
 $\gamma = 0$; (* initialize counter *)
 repeat
 $C_{pre} = \text{COST}(S)$;
 $S = \text{PERTURB}(S, p)$;
 $C_{cur} = \text{COST}(S)$;
 $\text{UPDATE}(p, C_{pre}, C_{cur})$;
 if ($\text{COST}(S) < \text{COST}(S_{BEST})$) then
 $S_{BEST} = S$; (* save best state *)
 $\gamma = \gamma - R$; (* decrement counter *)
 else
 $\gamma = \gamma + 1$; (* increment counter *)
 end
 until ($\gamma > R$); (* stopping criterion *)
 return (S_{BEST}); (* report best state *)
end.
Partitioning

PERTURB and UPDATE Procedures

Procedure PERTURB(S)
begin
for (each \(m \in M \)) do
\[S' = \text{SUB-MOVE}(S, m); \]
\[\text{Gain}(m) = \text{COST}(S) - \text{COST}(S'); \]
if \(\text{Gain}(m) > \text{RANDOM}(p, 0) \)
\[S = S'; \]
\[S = \text{MAKE-STATE}(S); \]
return \(S \);
end.

Procedure UPDATE\((p, C_{pre}, C_{cur}) \)
begin
if \(C_{pre} = C_{cur} \) then
\[p = p - 1; \]
else
\[p = p_0; \]
end.
METRIC-PARTITION Algorithm

- Input is a set V of the nodes and a set $S = S_1, S_2, ..., S_N$ of the nets.
- A metric value over $V \times V$ is computed
- Nodes in V are then partitioned into subsets
- Partitions meet area constraints and
 terminal constraints

Algorithm METRIC-PARTITION
begin
 for ($i = 1$ to N) do
 CONSTRUCT-ST(S_i);
 ADD-EDGES(S_i, L);
 SORT-ASCENDING($L, metric$);
 no_groups = INITIALIZE-GROUPS(V);
 while ($L \neq \phi$) do
Partitioning

METRIC-PARTITION Algorithm

\[e_{ij} = \text{SELECT-EDGE}(L); \]
\[\text{if} \ (G_i \neq G_j) \ \text{and} \]
\[(\text{AREA}(G_i) + \text{AREA}(G_j) \leq A) \ \text{and} \]
\[(\text{COUNT}(G_i) + \text{COUNT}(G_j) \leq T) \]
\[\text{MERGE-GROUPS}(G_i, G_j); \]
\[\text{no_groups} = \text{no_groups} - 1; \]
\[\text{if}(\text{no_groups} \leq K) \]
\[\text{return}(G); \]
\[\text{else} \]
\[\text{continue}; \]
\[\text{while}(\text{no_groups} > K) \ \text{do} \]
\[G_i = \text{SELECT_SMALL}(); \]
\[\text{for}(j = 1 \ \text{to} \ \text{no_groups}) \ \text{do} \]
\[\text{if}(i \neq j) \ \text{and} \]
\[(\text{AREA}(G_i) + \text{AREA}(G_j) \leq A) \ \text{and} \]
\[(\text{COUNT}(G_i) + \text{COUNT}(G_j) \leq T) \]
\[\text{STORE-MIN}(G_j); \]
METRIC-PARTITION Algorithm

\\begin{tabbing}
merge_success = TRUE; \\
MERGE_GROUPS(\(G_i \), RESTORE_MIN(\(G_j \))); \\
if(no_groups \leq K) \\
\hspace{1cm} return(G); \\
if(merge_success = FALSE) \\
\hspace{1cm} if(SIZE(G_i) = 1) \\
\hspace{2cm} return(\phi); \\
else \\
\hspace{1cm} G_j = SELECT_LARGE(); \\
DECOMPOSE(G_j, G_k, G_l); \\
end.
\\end{tabbing}
Lawler, Levitt and Turner (LLT) Algorithm

- Performance driven approach.
- Unit delay model is used.
- Circuit is represented by a directed graph.
- Each vertex has a weight indicating area occupied.
- Vertices are labelled as follows:
 - All input nodes are labelled ‘0’.
 - A node is given the same label as its predecessor if it can be accommodated.
- All nodes with same label are grouped in a cluster.
- Minimizes the maximum delay of signal under area constraints.
- Assumption: Delay within a cluster is negligible.

Example of LLT Algorithm
Partitioning Algorithms

Summary

Objectives
Hierarchical Partitions
Reduction of cutsize
Balanced Partitions

System
Partitioning Algorithms
Interface Information

System
A
B
C
D
E
F

speed, performance

Group Migration
Simulation based